РАСЧЕТ САХ КРЫЛА С КРИВОЛИНЕЙНЫМ КОНТУРОМ

Юрий Арзуманян (yuri _ la )

Прежде, чем решать задачу, надо понимать, что будешь делать с результатом.

Задачу можно решать двумя путями: можно с интегралами, а можно с дробями. Результат один и тот же, но с дробями проще…

Введение

Задача расчета САХ (Средней Аэродинамической Хорды) крыла возникает в практике авиамоделиста довольно часто. Существует ГОСТ 22833-77, в котором дано определение САХ и приведена общая формула для ее расчета. Правда, ГОСТ не объясняет, почему используется именно эта формула, и как ею реально пользоваться. Однако, в подавляющем большинстве случаев, когда рассматривается крыло простой формы в плане, с прямыми кромками, то есть трапециевидное, треугольное и т.п., необходимости вдаваться в математику нет никакой. Когда не было компьютеров, САХ определяли графическим методом. В качестве методических пособий использовались даже специальные плакаты, которые красовались на стенах авиамодельных секций и кружков.

Рис. 1. Учебный плакат-пособие

Сейчас существуют простые модельные калькуляторы (программы), которые можно установить на компьютер, или пользоваться ими онлайн. На RC - Aviation , например, доступен .

В нем, правда, отсутствует возможность расчета САХ крыла с криволинейным контуром. А иногда именно это и нужно. Вот, например, популярный у начинающих «Дракоша» (в данном случае Wing Dragon 500) от Art - Tech (Рис. 2). Его крыло имеет небольшую стреловидность по передней кромке у корневой нервюры, а дальше скругление к законцовке.


Рис. 2. «Дракоша»

Возможно, существуют более серьезные компьютерные программы, чем упомянутые мной простые модельные калькуляторы, которые, если есть введенное в компьютер графическое изображение контура крыла (проекции), обеспечивают такую возможность даже при отсутствии формул для кривизны кромки. Ну, а если у вас такого контура еще нет? Вы еще только прорисовываете контур крыла и хотите прикинуть разные варианты?

Поэтому целью данной статьи я ставил не только вывод конечных формул для расчета САХ такого крыла, но и раскрытие общего алгоритма расчета. Иными словами, хотелось показать, КАК это делается для понимания полученного результата.

Я предлагаю лишь один из возможных подходов к аппроксимации криволинейного контура с использованием кривых Безье , но этот метод не единственно возможный. Стоит заметить, что я попробовал разные методы. В частности, напрашивающийся метод с помощью сплайн-аппроксимации, с помощью степенных функций и др. Эти методы меня не устроили либо из-за сильного искажения контура крыла при определенном сочетании исходных данных, либо из-за своей громоздкости и вычислительной трудоемкости. Метод с использованием квадратичных кривых Безье показался мне наиболее приемлемым для тех условий и набора исходных данных, которые может иметь авиамоделист при обмере готовой модели или проектировании собственной. Повторюсь, что он применим как раз тогда, когда уравнение кривой, описывающей криволинейный контур, неизвестно. Может быть кто-то, прочитав данную статью, предложит лучший метод аппроксимации, но я пока остановился на этом.

Немного теории

Средней аэродинамической хордой принято считать хорду эквивалентного прямоугольного крыла, в идеале обладающего аналогичными аэродинамическими характеристиками, как и исходное. И положение центра тяжести самолета (ЦТ) в аэродинамике и динамике полета принято отсчитывать в процентах от САХ . Это позволяет уйти от всего многообразия форм крыла в плане и привести его к «общему знаменателю». Наконец, это просто удобно в практическом плане.

Итак, речь у нас идет о крыле самолета, а оно предназначено для создания подъемной силы, которая возникает за счет взаимодействия воздушного потока с крылом. Характер этого взаимодействия очень сложный, и в механизм создания подъемной силы крыла мы здесь вдаваться не будем, так же, как и не будем учитывать другие несущие элементы конструкции, хотя полученные выводы применимы и для другой несущей плоскости. Отметим только следующие моменты:

- Подъемная сила крыла создается всей его поверхностью, то есть она является распределенной , а не точечной аэродинамической нагрузкой;

- Распределение этой нагрузки по всей поверхности крыла неравномерно , как вдоль хорды, так и по размаху. Оно зависит от многих факторов, таких как форма крыла в плане, профиль (форма нервюр), крутка крыла, интерференция крыла и фюзеляжа, концевой вихрь, шероховатость поверхности, скорость и высота полета, угол атаки и т.д. и т.п.

На деле учесть теоретически все перечисленные факторы вряд ли возможно, тем более на стадии проектирования, когда и самолета-то еще нет. Однако поскольку САХ является условной опорной величиной, то целесообразно отбросить весь этот набор искажающих картину факторов, и принять одно глобальное допущение о том, что крыло является как бы плоским, и аэродинамическая нагрузка распределена по всей его площади равномерно . Тогда вычисление САХ становится возможным в аналитическом виде, то есть с помощью формул.

В механике принято в необходимых случаях заменять распределенную нагрузку равнодействующей силой, приложенной в той точке нагруженной поверхности, в которой такое воздействие точечной силы создаст эквивалентное нагружение тела. А САХ нам и нужна для того, чтобы определить то место на крыле, в котором и была бы приложена эта самая воображаемая равнодействующая аэродинамическая сила. Чтобы найти это место, нам надо вычислить расстояние до него от оси симметрии крыла (плечо САХ ), и саму величину САХ , поскольку она является хордой эквивалентного прямоугольного крыла, центр давления которого (та самая равнодействующая) приложена точно в середине хорды.

Вот к этому мы и приступим.

Метод расчета

На следующем рисунке показан вид вдоль продольной оси самолета на прямое плоское крыло. Продольная ось в системе координат самолета обозначена X , вертикальная Y , а поперечная (вдоль размаха крыла) – Z .

При проведении расчетов все силы и моменты, действующие на летательный аппарат, проецируют на оси или базовые плоскости выбранной системы координат . Система координат выбирается под задачу. В нашем случае это связанная система координат. О проекциях на базовые плоскости будет сказано ниже, пока же мы рассмотрим крыло простой формы, лежащее в базовой плоскости O XZ .


Рис. 3. Нагружение крыла

На правой консоли крыла показана распределенная аэродинамическая нагрузка с интенсивностью q . Размерность ее – сила, деленная на площадь, то есть давление. На левой консоли показана эквивалентная сосредоточенная сила Yk , которая приложена в точке, удаленной от оси на расстояние (плечо) Lcax . В результате эквивалентности такого нагружения крыло находится в равновесии, то есть сумма моментов относительно оси Х (начала координат) равна нулю.

Тогда в левой части уравнения момент можно записать как произведение Yk на Lcax , а в правой – брать бесконечно малую элементарную площадку, умножать ее площадь dS на интенсивность нагружения q , и на расстояние от этой элементарной площадки до оси, то есть координату z . Таких элементарных площадок будет бесконечное множество, и чтобы все это не суммировать, надо взять обыкновенный интеграл по площади. Собственно говоря, именно этот интеграл и записан в определении САХ в вышеупомянутом ГОСТе.

Таким образом, уравнение равновесия можно записать так:

Но поскольку Yk представляет собой силу, «собранную» со всей площади консоли крыла, то получить ее можно, просто помножив интенсивность аэродинамической нагрузки q на всю площадь консоли S . Тогда q в левой и правой части уравнения сократится, и в нем останутся только геометрические параметры.

В свою очередь площадь элементарной площадки dS можно вычислить, как это принято в математике, как площадь бесконечно малого элементарного прямоугольника с высотой, равной значению функции x = f ( z ) на координате z , умноженную на длину основания этого прямоугольника dz . Для наглядности это показано на Рис. 4.


Рис. 4. Консоль крыла в плане

Тогда уравнение равновесия можно переписать так:

Здесь L – полуразмах крыла.

Подынтегральное выражение называется статическим моментом площади . В этом выражении нам неизвестен вид уравнения x = f ( z ) . Кроме того, нам неизвестна площадь консоли S . Если бы контур крыла был образован прямыми линиями, то мы бы имели простое уравнение прямой, а площадь бы вычислялась, как площадь простой геометрической фигуры (трапеция, треугольник, параллелограмм и т.п.). Тогда взятие интеграла не составляло бы труда и, соответственно, получение искомого Lcax . Отсюда следующим шагом стало бы вычисление искомого значения САХ :

САХ = f ( Lcax )

Так вот, модельные калькуляторы САХ именно этими формулами и пользуются. Прежде чем продолжить наши выводы, я сразу эти формулы здесь и приведу, чтобы они были у вас при случае под рукой.

L cax = L[(H + 2h)/(H + h)]/3

САХ = H – ( H h ) Lcax / L

Если известна аналитическая формула, описывающая контур крыла, то таким способом можно вычислить САХ для более сложных крыльев в плане. Например, для эллиптического крыла (правильный эллипс, а не «примерно» эллипс).

Или приближенно L cax = 0,212 L ; САХ = 0,905 H . Кстати, на Рис. 1 крайне правое в верхнем ряду как раз показано эллиптическое крыло, и приведено значение САХ . Только там L это размах крыла, а здесь оно обозначено как полуразмах. Поэтому величины совпадают. Если крыло представляет собой круг, то формулы также справедливы при подстановке H = L = R , где R – радиус круга.

Но у нас контур крыла не описывается аналитической формулой, которую можно так же легко проинтегрировать. Во всяком случае, вид этой формулы нам неизвестен, и нам нужно подобрать необходимое уравнение, описывающее этот контур.

Вывод формул

Читатели, не знакомые с интегральным и дифференциальным исчислением, могут этот раздел пропустить.

Итак, я выбрал кривую Безье, а выражение для квадратичной кривой Безье записывается в параметрической форме так:

Здесь t – параметр, принадлежащий интервалу

На самом деле, при параметрической форме задания кривой на плоскости приведенное выше выражение объединяет в себе два уравнения, каждое для своей оси выбранной системы координат. Коэффициенты – опорные точки кривой – как раз и обозначают значения коэффициентов для каждой оси, что мы увидим ниже.

Начальная и конечная точки у нас имеют следующие координаты:

Координаты средней точки нам неизвестны и их предстоит определить. Подставив значения координат опорных точек, мы получим два параметрических уравнения на плоскости.

В дальнейших выкладках нам индексы не понадобятся, так как неизвестная точка всего одна. Поэтому я их пока опущу.

Так какую точку выбрать в качестве неизвестной средней опорной точки? Я предположил, что углы стреловидности у корневой и концевой нервюры w и u (Рис. 4) нам известны (замерены на реальном крыле), либо мы их зададим сами, если крыла еще нет. Тогда ее координаты будут координатами точки пересечения касательных к контуру, проведенных из начальной и конечной точек (Рис. 5). Заметьте, что оба угла стреловидности w и u здесь имеют отрицательные значения, поскольку в математике принято за положительное направление отсчета углов считать направление против часовой стрелки.


Рис. 5. К определению координат средней опорной точки

Значения этих координат следующие:

Здесь, правда, есть одно ограничение . Если у законцовки кривая контура крыла круто загибается и угол u приближается к девяноста градусам, то tg ( u ) обратится в бесконечность. Как ни странно, но в этом случае ситуация проще. Надо просто положить z = L . Вторая формула – без изменений. Такой контур крыла с круто загибающейся задней кромкой показан на Рис. 6.

Теперь мы можем использовать полученные выражения для вычисления интегралов. Однако в уравнении для Lcax неизвестной является и площадь крыла S , поэтому придется вычислить два интеграла: один для площади, другой для статического момента. Интеграл для площади, при задании кривых в параметрической форме, запишется так:

Здесь

Вычисление таких интегралов трудностей не представляет, это просто трудоемкая рутинная процедура, поэтому выкладки я приводить не буду, чтобы не утомлять читателя. Результирующая формула:

Теперь надо найти Lcax . Формула для вычисления:

Снова длинная рутинная процедура перемножения многочленов и взятие интегралов. Выкладки опускаю, результат таков:

Желающие могут меня перепроверить самостоятельно.

Для круто скругленной кромки, в данном случае задней, как на Рис. 6, то есть при z = L , формулы упрощаются.

Итак, плечо САХ мы нашли. Но эта величина у нас отсчитывается по оси Z . А теперь надо найти саму САХ , которая у нас измеряется по оси X . Поскольку x у нас задается параметрическим уравнением, то надо найти значение параметра t , которому соответствует Lcax . Подставляя Lcax в уравнение для z ( t ) , и решая его относительно t , получим следующую формулу:

Теперь находим собственно САХ .

Задача решена! Для получения результата нам понадобились всего четыре формулы. При этом одна из них «попутно» дала нам площадь консоли!

Числовой пример

Возьмем такое крыло, как на Рис. 5. Исходные данные для него следующие:

Полуразмах L = 5 дм; корневая хорда Н = 3 дм; концевая хорда h = 1 дм; угол стреловидности у корневой нервюры w = -3 градуса; угол стреловидности у концевой нервюры u = -45 градусов.

Точка пересечения касательных дает те самые координаты третьей опорной точки для параметрических уравнений кривой, описывающих переднюю кромку крыла. Напоминаю, что в расчетных формулах индекс опущен.

В нашем случае: дм; дм.

Вычислим площадь консоли и Lcax :

S = 11,674 кв . дм ; Lcax = 2,162 дм .

И теперь уже собственно CAX = 2,604 дм

Положение САХ на графике показано вертикальной линией.

Что ж, задачу мы решили. И самое главное, что интегралы мы свели к дробям… А ведь с дробями проще!

Но это еще не конец истории. Что если у нас и задняя кромка криволинейная? И если «криволинейность» ее другая? Смотрим на картинку Рис. 6.


Рис. 6. Пример крыла с криволинейными передней и задней кромками

Сразу отмечу, что ничего сложного в этой задаче нет. У нас уже есть весь набор инструментов для ее решения. Крыло у нас разбито на две секции: выше оси Z и ниже ее. Я специально выбрал крутое скругление задней кромки, чтобы продемонстрировать возможность оперирования с произвольным контуром крыла.

Итак, для верхней (передней) секции крыла мы уже знаем что делать, для нижней (задней) поступаем точно также. Особенность будет заключаться лишь в том, что для нее значения H и h будут отрицательными, поскольку они лежат ниже оси абсцисс, а углы стреловидности положительными. Так что проводим вычисления еще раз с новыми значениями, и получаем параметры для нижней секции крыла. Вот только площадь сегмента получится отрицательной! Конечно, в реальности этого быть не может, это просто мы так «неудачно» выбрали оси координат. Учтем это обстоятельство при вычислении площади консоли.

Что делать дальше? Мы имеем две секции, которым присвоим индексы в – для верхней (передней) и н – для нижней (задней). С учетом знаков, суммарная площадь консоли S равна:

Также мы имеем Lcax . Теперь нужно вычислить Lcax для всей консоли по следующей формуле.

Тогда для верхней секции:

Соответственно для нижней:

Здесь опять координата получится отрицательной. Поэтому окончательно САХ вычисляется по формуле:

Пример

Продолжим приведенный выше пример (Рис. 6) со следующими значениями исходных величин для нижней секции консоли. Верхняя секция без изменений.

Корневая хорда Н = -3 дм; концевая хорда h = 0 дм

Угол стреловидности у корневой нервюры w = 0 градусов; у концевой u = 90 градусов.

Получим:

И, окончательно:

САХ = 5,591 дм

На Рис. 6 показаны САХ для верхней и нижней секций консоли. Результирующую САХ я не показал, поскольку она близка к этим двум и на рисунке будет сливаться. Все вычисления удобно проводить в Excel и сразу строить графики контура. Это наглядно покажет, похож ли ваш контур на желаемый, и при случае выявит ошибку в вычислениях.

Заключение

Обратите внимание, что попутно мы в принципе решили задачку вычисления САХ для многосекционного крыла. Ведь разбиение крыла на участки – это и есть аналог многосекционного крыла, у которого, например, резко меняется контур центроплана, консоли или законцовки. Только угол сопряжения кривых в стыке участков будет разный. Есть и другие особенности в расчете, если секции крыла расположены не вдоль хорды, а вдоль размаха.

Далее, необходимо учитывать, что если ваше крыло имеет поперечное V , при этом излом крыла всего один, (верхние конфигурации крыла на плакате Рис. 1), то выведенные выше формулы остаются справедливыми при расчете САХ . Если же крыло имеет два и более излома (нижние конфигурации крыла на плакате Рис. 1), то при расчете САХ придется переходить к проекциям крыла на базовые плоскости.

Но подробнее обо всем этом в другой раз…

Базовым вариантом является региональный самолет Ан-148-100, обеспечивающий перевозку в одноклассной компоновке от 70 пассажиров с шагом кресел 864 мм (34‘’) до 80 пассажиров с шагом кресел 762 мм (30‘’). С целью обеспечения гибкости удовлетворения требований различных авиакомпаний, а также с целью снижения эксплуатационных затрат и повышения рентабельности перевозок предусматривается сертификация базового самолета в вариантах с максимальной дальностью полета от 2200 до 5100 км. Крейсерская скорость полета 820-870 км/ч. Проведенные маркетинговые исследования показали, что базовый самолет по своим технико-экономическим характеристикам отвечает требованиям большого количества авиакомпаний.

Самолет Ан-148-100 выполнен по схеме высокоплана с двигателями Д-436-148, размещенными на пилонах под крылом. Это позволяет повысить уровень защищенности двигателей и конструкции крыла от повреждений посторонними предметами. Наличие вспомогательной силовой установки, бортовой системы регистрации состояния самолета, а также высокий уровень эксплуатабельности и надежности систем позволяют использовать Ан-148-100 на сети технически слабооснащенных аэродромов.

Современное пилотажно-навигационное и радиосвязное оборудование, применение многофункциональных индикаторов, электродистанционных систем управления полетом самолета позволяют использовать Ан-148-100 на любых воздушных трассах, в простых и сложных метеоусловиях, днем и ночью, в том числе на маршрутах с высокой интенсивностью полетов при высоком уровне комфорта для экипажа.

Комфорт пассажирам обеспечивается на уровне комфорта на магистральных самолетах и достигнут рациональной компоновкой и составом сервисных помещений, глубокой эргономической оптимизацией общего и индивидуального пространства пассажирского салона, применением современных кресел, дизайна и материалов интерьера, а также созданием комфортных климатических условий и низкого уровня шума. Рационально выбранная длина пассажирского салона и размещение пассажиров в ряду по схеме 2+3 позволяют силами эксплуатанта получить различные одноклассные и смешанные компоновки в диапазоне 55-80 пассажиров с салонами экономического, бизнес и первого класса. Высокая степень преемственности конструктивно-технологических решений и эксплуатационной унификации Ан-148-100 с успешно эксплуатируемыми самолетами «Ан», использованием «Hi-Tech» компонентов оборудования и систем отечественного и зарубежного производств обеспечивают самолету Ан-148-100 высокий конкурентный уровень экономической эффективности, технического и эксплуатационного совершенства.

Техническое обслуживание самолета Ан-148-100 основано на удовлетворении требований международных стандартов (ICAO, MSG-3) и обеспечивает поддержание летной годности самолета в пределах жизненного цикла эксплуатации по состоянию с интенсивностью до 300 ч в месяц с коэффициентом готовности более 99,4%, при минимизации затрат на ТО (1,3 чел-ч на 1 час налета).

Семейство самолетов Ан-148 также включает следующие модификации:

пассажирский самолет, обеспечивающий перевозку 40-55 пассажиров на дальность до 7000 км; административный на 10 – 30 пасс. с дальностью до 8700 км;

грузовой вариант с боковой грузовой дверью для перевозок генеральных грузов на поддонах и в контейнерах;

грузо-пассажирский вариант для смешанных перевозок «пассажиры + груз».

Принципиальной особенностью создания семейства Ан-148 является использование максимальной унификации и преемственности агрегатов и компонентов базового самолета – крыла, оперения, фюзеляжа, силовой установки, пассажирского и самолетного оборудования.

Расчет крыла большого удлинения

Геометрические данные крыла

–площадь стреловидного крыла;

Удлинение стреловидного крыла;

Размах стреловидного крыла;

Сужение стреловидного крыла;

Корневая хорда крыла;

Концевая хорда крыла;

Угол стреловидности крыла по передней кромке.

Так как крыло данного самолета стреловидное и угол по передней кромке более 15° (рис. 1), вводим эквивалентное равновеликое по площади прямое крыло, и все расчеты проводим для этого эквивалентного крыла. Прямое крыло введем путем поворота стреловидного так, чтобы прямая проходящая по половине хорды прямого крыла была перпендикулярна оси фюзеляжа (рис. 2). При этом размах спрямленного крыла

.

Площадь спрямленного крыла:

причем в качестве параметра примем значение, равное расстоянию от конца консоли спрямленного крыла до оси самолёта, так как схема данного самолета – высокоплан (рис. 3)

. Тогда .

Найдем относительную координату линии центров давления. Для этого определим коэффициент подъемной силы для расчетного случая А.

Взлетный вес данного самолета;

- плотность воздуха на высоте Н = 0 км;

- крейсерская скорость самолета ( = кг),

Скорость пикирования,

.

Тогда: С х = 0,013; С д = 0,339; α 0 = 2 о

Лонжероны в крыле располагаем:

Передний лонжерон на расстоянии 15% хорды от носка крыла;

Задний лонжерон на расстоянии 75% хорды от носка крыла (рис. 5).

В расчетном сечении () высота переднего лонжерона , заднего- .

Определение нагрузок на крыло

На крыло воздействуют распределенные по поверхности воздушные силы и массовые силы от конструкции крыла и от помещаемого в крыле топлива, сосредоточенные силы от массы агрегатов, расположенных на крыле.

Массы агрегатов находим через их относительные массы от взлетной массы самолета:

Масса крыла;

Масса силовой установки;

Так как на самолёте 2 двигателя, то массу одного двигателя примем равной

.

Распределение воздушной нагрузки по длине крыла.

По длине крыла нагрузка распределяется по закону относительной циркуляции:

,

где - относительная циркуляция,

.

В случае стреловидного крыла относительная циркуляция определяется по формуле:

, где - влияние стреловидности крыла, ( - угол стреловидности по четверти хорды).

Таблица – Распределение воздушной нагрузки по консоли крыла

zотн 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
 Г45 -0,235 -0,175 -0,123 -0,072 -0,025 0,025 0,073 0,111 0,135 0,14 0
Г пл 1,3859 1,3701 1,3245 1,2524 1,1601 1,0543 0,9419 0,8271 0,7051 0,5434 0
Г 1,27404 1,2868 1,265952 1,218128 1,1482 1,0662 0,976648 0,879936 0,76936 0,61004 0
qв,H/м 36430,7 36795,5 36199,4 34831,9 32832,3 30487,6 27926,9 25161,4 21999,5 17443,9 0,0

Распределение массовой нагрузки по размаху крыла.

, где - хорда крыла.

Массовую нагрузку от веса топлива распределяем пропорционально площадям поперечного сечения топливных баков

, где - удельный вес топлива.

где - вес топлива (для самолёта АН 148 ).

Суммарная погонная нагрузка на крыло находится по формуле:


.

Начало координат поместим в корне крыла, сечения нумеруем от корня в направлении конца крыла, начиная с .

Результаты расчетов заносим в таблицу.

z, м b(z), м , кг/м , кг/м , кг/м , кг/м
0 0 4,93 1,3435 -0,060421 1,283079 4048,02 505,33 2187,441 1355,25
0,1 1,462 4,559 1,3298 -0,044994 1,284806 4053,46 467,30 1870,603 1715,56
0,2 2,924 4,188 1,2908 -0,031625 1,259175 3972,60 429,27 1578,541 1964,79
0,2 2,924 4,188 1,2908 -0,031625 1,259175 3972,60 429,27 0 3543,33
0,3 4,386 3,817 1,2228 -0,018512 1,204288 3799,44 391,24 0 3408,20
0,4 5,848 3,446 1,1484 1,141972 3602,84 353,22 0 3249,62
0,4 5,848 3,446 1,1484 1,141972 3602,84 353,22 1068,742 2180,88
0,5 7,31 3,075 1,057 0,006428 1,063428 3355,03 315,19 851,0063 2188,84
0,6 8,772 2,704 0,9571 0,018769 0,975869 3078,79 277,16 658,0454 2143,59
0,7 10,234 2,333 0,8538 0,028539 0,882339 2783,71 239,13 489,86 2054,72
0,8 11,696 1,962 0,743 0,03471 0,77771 2453,62 201,11 346,45 1906,06
0,9 13,158 1,591 0,6091 0,035996 0,645096 2035,23 163,08 227,8153 1644,34
0,95 13,889 1,4055 0,4593 0,032139 0,491439 1550,45 144,06 177,7887 1228,60
1 14,62 1,22 0 0 0 0,00 0,00 0 0

Строим эпюры функций , и (рис. 7)

Построение эпюр поперечных сил, изгибающих и приведенных моментов.

При определении закона распределения поперечных сил и изгибающих моментов по длине крыла вначале находим функции и от воздействия распределенной нагрузки . Для этого табличным способом вычисляем интегралы методом трапеций.

, ,

Расчет производим по следующим формулам:

;

; ,

, .

Аналогично рассчитываем величины изгибающих моментов:

,


Полученные результаты заносим в таблицу 2.

Таблица 2

z,м ΔQ, кг Q, кг ΔM, кгм M, кгм
0 0 2244,77 20592,41 196758,3 1016728
0,1 1,462 2690,34 18347,64 172115,8 819969,8
0,2 2,924 2969,13 15657,30 152033,9 647854
0,3 4,386 3127,09 12688,17 130883,4 495820,1
0,4 5,848 3194,27 53414,20 121865,8 364936,7
0,5 7,31 3167,01 43712,46 87477,02 243070,9
0,6 8,772 3068,96 34081,88 66035,43 155593,9
0,7 10,234 2895,33 24644,21 57833,87 89558,46
0,8 11,696 2595,34 15538,14 24598,34 31724,59
0,9 13,158 1602,68 6337,4565 7126,248 7126,248
1 14,62 0 0 0 0

Необходимо учесть воздействие сосредоточенных массовых сил :

, ;

Построим эпюры , (рис. 8)


При построении эпюры приведенных моментов вначале задаемся положением оси приведения. Она проходит через переднюю кромку крыла параллельно оси “z” Строим эпюру погонных моментов от воздействия распределенных нагрузок , и .

Для погонных моментов:

,

.

Расстояния от точек приложения нагрузок до оси приведения.

Момент считаем положительным, если он действует против часовой стрелки.

Интегрируя эпюру , получаем приведенные моменты от воздействия распределенных нагрузок. Схема расчета имеет вид:

.

Полученные результаты заносим в таблицу 3:

Таблица 3

qv qkr qt av akr at mz dM M
4027,11 502,72 2187,44 1,67127 2,2185 2,3664 438,75654 42399,48
4032,53 464,88 1870,60 1,69219 2,1982393 2,335009 1434,007 1368,9901 41030,49
3952,09 427,05 1578,54 1,713111 2,1779786 2,303619 2203,8936 2659,3053 38371,18
5840,2499
3779,82 389,22 1311,25 1,734031 2,1577179 2,272228 6371,3749 3610,3448 34760,84
3584,23 351,39 1068,74 1,754951 2,1374572 2,240837 6780,5438 4297,6997 30463,14
3144,1876
3337,71 313,56 851,01 1,775871 2,1171965 2,209446 3383,2196 4771,5346 25691,6
3062,89 275,73 658,05 1,796792 2,0969357 2,178056 3491,9366 5025,7392 20665,86
2769,34 237,90 489,86 1,817712 2,076675 2,146665 3488,2576 5102,522 15563,34
2440,94 200,07 346,45 1,838632 2,0564143 2,115274 3343,7442 4994,1933 10569,15
2024,72 162,24 227,82 1,859553 2,0361536 2,083884 2959,9915 4608,0307 5961,119
1542,45 143,32 177,79 1,870013 2,0260233 2,068188 2226,3231 3791,1959 2169,923
0,00 0,00 0,00 1,880473 2,0158929 2,052493 0 2169,9229 0

Приведенный момент от воздействия сосредоточенных масс находим по формуле:

,

где - расстояние от цеyнтра тяжести -того бака до оси приведения.

Строим суммарную эпюру (рис. 9)

Проверка правильности построения эпюр нагрузок по крылу.

С эпюры =20592кг.

Определение точки положения поперечной силы в расчетном сечении

Зная поперечную силу и приведенный момент в расчетном сечении(=0.2), можно найти точку приложения поперечной силы по хорде крыла расчетного сечения:

Координату откладывают от оси приведения.

Проектировочный расчет сечения крыла

В проектировочном расчете необходимо подобрать силовые элементы поперечного сечения крыла: лонжероны, стрингеры и обшивку. Подберем материалы для продольных элементов сечения крыла и занесем их механические характеристики в таблицу 4.


Таблица 4

Шаг стрингеров находят из условия получения волнистости поверхности крыла не выше определенного значения. Величина должна удовлетворять неравенству

.

Здесь и – давление в горизонтальном полете на нижней и верхней поверхностях крыла;

– коэффициент Пуансона, для дюраля ;

– модуль упругости первого рода материала обшивки.

Приближенно величины и считаем равными

,

.

Параметр является относительным прогибом, рекомендуемое значение которого не более .

Задаваясь шагом стрингеров, найдём толщину обшивки, удовлетворяя неравенство (табл. 5).


Таблица 5.

По соображениям прочности увеличим толщину обшивки, приняв

δ сж = 5(мм), δ р = 4(мм),

Определим количество стрингеров на верхней и на нижней частях поперечного сечения: . (рис. 10)

Нагрузки, воспринимаемые панелями будут равны


Нагрузка, воспринимаемая панелью может быть представлена

Подбор продольного силового набора в растянутой зоне

Усилие в растянутой зоне определяется равенством

где – количество стрингеров в растянутой зоне, учитываемое в проектировочном расчете,

– площадь поперечного сечения одного стрингера,

– толщина обшивки в растянутой зоне.

Так как панель цельнофрезерованная:

– коэффициент, учитывающий концентрацию напряжений и ослабление сечения отверстиями под заклепки или болты,

– коэффициент, учитывающий запаздывание включения в силовую схему обшивки по сравнению со стрингерами, .


Тогда найдем потребную площадь стрингеров в растянутой панели: рис. 11

Зная потребную площадь стрингера, из сортамента профилей выберем стрингер с близкой площадью поперечного сечения. Выбираем угольник равностенный ПР100-22, , , (рис 11).

Определим площади поясов лонжерона

Площадь следует распределить между растянутыми полками переднего и заднего лонжеронов.

Подбор продольного силового набора в сжатой зоне

Усилие в сжатой зоне находят по формуле:

где – количество стрингеров в сжатой зоне, учитываемое в проектировочном расчете,

– расчетное разрушающее напряжение стрингера в сжатой зоне,

– площадь поперечного сечения одного стрингера в сжатой зоне,

Присоединенную площадь обшивки определим по формуле:

.

Тогда потребная площадь стрингера:

Зная потребную площадь стрингера, из сортамента профилей выберем стрингер с близкой площадью поперечного сечения (Рис. 12). Это бульбоугольник ПР102-23, , , . Рис. 12

Критические напряжения местной потери устойчивости выбранного стрингера определим по формуле:

,

Коэффициент, учитывающий условия закрепления граней стенки.

Стрингеры на местную устойчивость проверим для всех стенок стрингера, кроме приклепываемых к обшивке.

для полки стрингера:

.

Так как >, их необходимо скорректировать по формулам:

, , ,

Ширину присоединенной обшивки, работающей с напряжениями стрингера, определим:

Площадь присоединенной обшивки:

Суммарная площадь полок лонжеронов:

Распределим площадь между сжатыми полками переднего и заднего лонжеронов пропорционально квадратам их высот:

,

Примем отношение ширины полки лонжерона к ее толщине , тогда

1лонжерон:

, ; , ;

2лонжерон:

, ; , .

Подбор толщин стенок лонжеронов

Определим моменты инерции лонжеронов.

,

,

Перенося поперечную силу со статическим нулем в центр жесткости, замечаем, что эта сила эквивалентна двум силам:

и крутящему моменту

Эти силы вызывают потоки касательных усилий в стенках лонжеронов (рис. 13) .

Если предположить, что крутящий момент воспринимается только внешним контуром сечения крыла, то этот момент уравновешивается потоком касательных усилий

Тогда в зависимости от расположения поперечной силы (до или после центра жесткости)

Найдем толщину стенки:

, ,

. .

Определение расстояния между нервюрами

Расстояние между нервюрами определяется из условия равнопрочности при местной потере устойчивости стрингера и при общей потере устойчивости стрингера с присоединенной обшивкой.

Критические напряжения потери устойчивости стрингера определяются по формуле:

,

где – момент инерции сечения стрингера с присоединенной обшивкой относительно оси, проходящей через центр тяжести этого сечения и параллельной плоскости обшивки;

– расстояние между нервюрами.

Проверочный расчет крыла

Целью проверочного расчета является проверка прочности конструкции при действительной геометрии и физико-механических характеристиках материалов конструкции методом редукционных коэффициентов.

Для определения коэффициента редукции нулевого приближения построим диаграмму деформирования материалов обшивки, стрингеров и лонжеронов. Параметры деформирования приведены в таблице 4.

Имея диаграмму деформирования, выбираем фиктивный физический закон. При расчетных нагрузках напряжения в наиболее прочном элементе конструкции - лонжероне - близки к временному сопротивлению. Поэтому фиктивный физический закон целесообразно проводить через точку (рис. 14).


сжатой зоне :

Лонжерон : ,

Стрингер: .

Определяем коэффициент редукции нулевого приближения в растянутой зоне :

Лонжерон: ,

Стрингер: .

Определим редуцированные площади элементов. Действительные площади элементов сечения:

Редуцированные площади:

Дальнейшие расчеты представлены в таблице 6.

Далее необходимо найти координаты центра тяжести редуцированного сечения. Определяем положение центральных осей редуцированного сечения. Исходные оси выбираем проходящими через носок профиля в соответствии с его геометрией (рис. 15).

Координаты центра тяжести редуцированного сечения определяем следующим образом:

,

,

где - число сосредоточенных площадей в сечении.

Координаты сосредоточенных элементов в центральных осях найдем так:

Определяем осевые и центробежные моменты инерции редуцированного сечения в центральных осях:

,

.

Вычислим координаты элементов в главных центральных осях

,

. (табл 6)

Определяем моменты инерции в главных центральных осях

,

.

Определяем проекции изгибающих моментов на главные центральные оси (рис. 17):

Определяем редуцированные напряжения в элементах сечения:

Определяем действительные напряжения в продольных элементах из условия равенства деформации действительных и редуцированных сечений по диаграмме деформирования (рис. 18).

После нахождения действительных напряжений определяем коэффициент редукции последующего приближения для каждого элемента конструкции:

Определение коэффициентов редукции последующих приближений для каждого элемента конструкции будет проведено с помощью ЭВМ. (приложение 1)

После достижения сходимости коэффициентов редукции необходимо определить коэффициенты избытка прочности в элементах:

В растянутой зоне, - в сжатой зоне.


Таблица 5


Таблица 5 (продолжение)

Проверочный расчет на касательные напряжения

Оценим прочность обшивки модифицированного сечения. Обшивка находится в плоском напряженном состоянии. В ней действуют касательные напряжения, значения которых получены на основе расчета на ЭВМ:

и нормальные напряжения , которые равны .(табл. 7)

Определим критическое напряжение потери устойчивости обшивки:

Расстояние между нервюрами, - шаг стрингеров.

Если обшивка теряет устойчивость от сдвига () и работает как диагонально – растянутое поле (рис. 19), то в ней возникают дополнительные растягивающие нормальные напряжения, определяемые по формуле:

,

,

где – угол наклона диагональных волн.


Таким образом, напряженное состояние в точках обшивки расположенных вблизи стрингеров, определяем по формулам:

. .

Условие прочности, соответствующее критерию энергии формообразования, имеет вид:

Коэффициент , характеризующий избыток прочности обшивки определяем по формуле:


Полученные результаты заносим в таблицу 7.

Строим эпюру касательных напряжений (рис. 20)


Таблица 7

Расчет центра жесткости сечения крыла

Центр жесткости – это точка, относительно которой происходит закручивание контура поперечного сечения, либо это точка, при приложении поперечной силы в которой закручивание контура не происходит. В соответствии с этими двумя определениями существуют 2 метода расчета положения центра жесткости: метод фиктивной силы метод фиктивного момента. Так как проверочный расчет на касательные напряжения проведен, и эпюра суммарных ПКУ построена, то для расчета центра жесткости сечения используем метод фиктивного момента.

Определяем относительный угол закручивания 1 го контура. Эпюра q S - известна.

В соответствии с формулой Мора к первому контуру прикладываем единичный момент:

Так как обшивка самостоятельно не работает на нормальные напряжения, эпюра меняется скачком на каждом продольном элементе, оставаясь постоянной между элементами, то от интеграла перейдем к сумме

Определяем относительный угол закручивания сечения крыла при приложении к нему момента М = 1 ко всему контуру. Неизвестными являются q 01 q 02 , для их определения запишем два уравнения: уравнение равновесия относительно т.А (нижний пояс переднего лонжерона) и уравнение равенства относительных углов закручивания первого и второго контуров (аналог ур-я совместности деформации).

где - удвоенные площади контуров.

Для расчета относительных углов воспользуемся формулой Мора. Прикладывая к каждому контуру единичный момент


Таким образом, уравнения для расчета неизвестных и примут вид

Решая которые, находим

После нахождения `М 1 и`М 2 , определяем относительный угол закручивания первого контура, от приложения к сечению единичного момента:

Определяем величину крутящего момента в сечении крыла от действующих нагрузок. Поскольку деформирование линейно, угол закручивания прямо пропорционален величине М кр, тогда:

Определяем расстояние от поперечной силы до центра жесткости (рис. 21).

м.

Эксплуатационная работа, поглощаемая амортизационной системой при посадке:

,

где - эксплуатационная вертикальная посадочная скорость, равная

Но так как , то принимаем м/с.

кДж.

Одна стойка воспринимает эксплуатационную работу

кДж.

Вычислив эксплуатационную работу, поглощенную пневматиками при посадке

найдем работу воспринимаемую амортизатором

Ход амортизатора вычисляем по формуле

Коэффициент полноты диаграммы обжатия амортизатора при восприятии работы .

φ э - передаточное число при ходе поршня S э.

Так как рассматривается телескопическая стойка и при этом предполагается, что в момент касания колесами земли ось стойки перпендикулярна поверхности земли, то η е =0,7 и φ э =1.

Для определения поперечных размеров амортизатора находим из равенства

площадь, по которой газ воздействует на шток амортизатора.

Зададимся значениями параметров:

МПа – начальное давление газа в амортизаторе;

– коэффициент предварительной затяжки амортизатора;

– передаточное число в момент начала обжатия амортизатора;

м 2 .

Для амортизатора с уплотнением, закрепленным на цилиндре, внешний диаметр штока равен величине:

м.

Толщину уплотнительных колец полагаем .Тогда для внутреннего диаметра цилиндра

Начальный объем V 0 газовой камеры находим по формуле


Высота газовой камеры при необжатом амортизаторе

м.

Параметры и находим по следующему алгоритму.

Для нахождения неизвестных и используем уравнения

1

2

3

После некоторых преобразований

4

Здесь - передаточное число соответствующее ходу амортизатора

Коэффициент полноты диаграммы обжатия амортизатора при поглощении работы . Для телескопических стоек .

Первое из равенств (3) имеет вид квадратного уравнения

, 5

где , 6

7

из равенства (5)

8

Подставляя из (8) во второе уравнение (3) получаем трансцендентное уравнение

корень которого есть искомая величина .

Вычисления сведены в табл. 8

Таблица 8.

Строим график в координатной системе (S max , f) (рис. 22).


Точка пересечения кривой с осью f = 0 дает значение S max =0,55.

Из зависимости (8) найдём

.

Давление газа в амортизаторе при его максимальном обжатии

МПа.

Высота уровня жидкости над верхней буксой

м.

При этом:

0,589 + 0,1045 = 0,6935 > 0,55 – условие выполняеться.

Задаваясь значениями параметров:

м - конструктивный ход амортизатора;

м - суммарная высота букс;

м - опорная база штока;

м - суммарный размер узлов крепления амортизатора;

получаем длину амортизатора в необжатом состоянии

Длина амортизатора при эксплуатационном обжатии

Определение нагрузок на стойку

Коэффициент расчетной перегрузки:

Расчетная вертикальная и горизонтальная нагрузки на стойку равны:

Между колесами усилие распределяется в соотношении 316,87: 210,36, а усилие - 79,22: 52,81.

Построение эпюр изгибающих моментов

Стойка является комбинированной системой. Вначале методом сечений находим усилие в подкосе. Записываем для стойки уравнение равновесия относительно шарнира

Эпюра изгибающих моментов, действующих в плоскости движения самолёта, изображена на рисунке 23.

Максимальный момент, равный 489,57кНм, действует в точке навески шасси.

Эпюра изгибающих моментов, действующих в плоскости перпендикулярной плоскости движения самолёта, изображена на рисунке 24.

Скачек на эпюре в точке присоединения стержня к цилиндру, созданный эксцентриситетно приложенной силой (вертикальной проекцией усилия в стержне), равен кНм.

Крутящий момент равен величине

и нагружает только цилиндр.

Подбор параметров поперечного сечения элементов

В проектировочном расчете для телескопической стойки подбирают толщины стенок цилиндра и штока. Вначале для каждого из указанных элементов выбираем сечение, в котором изгибающий момент имеет максимальное значение. Осевые усилия и крутящий момент в проектировочном расчете не учитываем. Из условия прочности

,

где k – коэффициент пластичности, принимаем ;

W – момент сопротивления

, ;

МПа.

Из этого уравнения находим

Зная наружный диаметр штока получим внутренний

Тогда толщина стенки .

Аналогично находим значение для цилиндра, но так как наружный диаметр цилиндра неизвестен, то в нулевом приближении принимаем его равным м. Тогда получим


Построение эпюры осевой силы

Расчетное давление газа в амортизаторе

Газ давит на шток с силой

Несоответствие между силой Р ш и внешней нагрузкой 528,127 кН объясняется наличием сил трения в буксах. Таким образом, сила трения в одной буксе равна величине

кН.

На верхнем конце штока газ давит на шток с силой

Следовательно, между сечениями, проходящими через верхнюю и нижнюю буксы, шток сжимается силой

ниже сечения нижней буксы – силой

На цилиндр газ воздействует через уплотнение с осевой силой

растягивающей цилиндр. При построении эпюры N ц, следует учесть также силы F тр и S z . Окончательный вид эпюр осевых сил N ц и N ш показан на рис. 25

Одним из важных этапов строительства авиамодели является расчет и проектирование крыльев. Для того, чтобы правильно спроектировать крыло, необходимо учесть несколько моментов: правильно выбрать корневой и концевой профили, правильно их выбрать исходя из нагрузок, которые они обеспечивают, а также правильно спроектировать промежуточные аэродинамические профиля.

С чего начинается конструирование крыльев

В начале конструирования на кальке был сделан предварительный эскиз самолёта в натуральную величину. В ходе этого этапа я определился с масштабом модели и с размахом крыльев.

Определение размаха

Когда предварительный размах крыла был утвержден, наступило время для определения веса. Эта часть расчета имела особое значение. Первоначальный план включал в себя размах крыльев в 115 см, однако, предварительный расчет показал, что нагрузка на крыльях будет слишком высокой. Поэтому я масштабировал модель до размаха в 147 см без учета законцовок крыльев. Такая конструкция оказалась более подходящей с технической точки зрения. После расчета мне осталось сделать весовую таблицу со значениями весов. В свою таблицу я также добавил усредненные значения веса обшивок, например, вес бальзовой обшивки самолёта был определен мной, как произведение площади крыла на два (для низа и верха крыла) на вес квадратного метра бальзы. Тоже самое было сделано для хвостового оперения и рулей высоты. Вес фюзеляжа был получен путем умножения площади боковой стороны, а также верха фюзеляжа на два и на плотность квадратного метра бальзы.

В результате я получил следующие данные:

  • Липа, 24 унции на кубический дюйм
  • Бальза 1/32’’, 42 унции на квадратный дюйм
  • Бальза 1/16’’, 85 унций на квадратный дюйм

Устойчивость

После определения веса были рассчитаны параметры устойчивости для того, чтобы убедиться, что самолёт будет устойчивым и все детали будут адекватного размера.

Для устойчивого полёта необходимо было обеспечить несколько условий:

  1. Первый критерий — значение средней аэродинамической хорды (САХ). Его можно найти геометрическим путем, если добавить к корневой хорде с двух сторон концевую, а к концевой хорде с двух сторон корневую, а потом соединить крайние точки вместе. В точке пересечения и будет находится центр САХ.
  2. Значение аэродинамического фокуса крыла составляет 0,25 от значения САХ.
  3. Этот центр необходимо найти как для крыльев, так и для рулей высоты.
  4. Далее определяется нейтральная точка самолёта: она показывает центр тяжести самолета, а также вычисляется вместе с центром давления (центром подъемной силы).
  5. Далее определяется статическая граница. Этот критерий оценивает устойчивость самолёта: чем он выше, тем больше устойчивость. Однако, чем более устойчивее самолёт, тем он более маневренный и менее управляемый. С другой стороны на слишком неустойчивом самолёте тоже нельзя летать. Среднее значение этого параметра — от 5 до 15%
  6. Также рассчитываются коэффициенты оперения. Эти коэффициенты используются для сравнения эффективности аэродинамики руля высоты через соотношение размеров и расстояния до крыла.
  7. Коэффициент вертикального оперения обычно находится между 0,35 и 0,8
  8. Коэффициент горизонтального оперения обычно между 0,02 и 0,05

Выбор правильного аэродинамического профиля

Выбор правильного профиля определяет правильное поведение самолёта в воздухе. Ниже я привожу ссылку на простой и доступный инструмент для проверки аэродинамических профилей. В качестве основы для выбора профилей я выбрал концепцию, согласно которой длина хорды на законцовке крыла равна половине длины хорды в корневой части. Наилучшее решение того, чтобы не допустить срыв потока на крыле, которое я нашел, заключалось в резком сужении крыла на законцовке без возможности сохранения управления самолётом до набора достаточной скорости. Я добился этого с помощью разворота крыла вниз на конце и через тщательный подбор корневых и концевых профилей.

В корне я выбрал аэродинамический профиль S8036 с толщиной крыла в 16% от длины хорды. Такая толщина позволила заложить лонжерон достаточной прочности, а также выдвижные шасси внутри крыла. Для концевой части был выбран профиль – S8037, который также имеет толщину в 16% от толщины хорды. Такое крыло будет уходить в срыв при большом коэффициенте подъёмной силы, а также при большем угле атаки, чем S8036 при том же числе Рейнольдса (этот термин служит для сравнения профилей разного размера: чем больше число Рейнольдса, тем больше хорда). Это значит, что при том же числе Рейнольдса в корневой части крыла срыв произойдет быстрее, чем на законцовке, но контроль за управлением сохранится. Однако, даже если длина хорды корня в два раза больше длины хорды законцовки, она имеет число Рейнольдса в два раза большее, а увеличение числа приведет к задерживанию сваливания. Именно поэтому, я развернул законцовку крыла вниз, так что оно перейдет в сваливание только после корневой части.

Ресурс для определения аэродинамических профилей: airfoiltools.com

Теория по основам конструирования крыльев

Конструкция крыла должна обеспечивать достаточную подъёмную силу для веса самолёта и дополнительных нагрузок, связанных с маневрированием. В основном это достигается с помощью использования центрального лонжерона, который имеет два пояса, верхний и нижний, каркаса, а также тонкой обшивки. Несмотря на то, что каркас крыла тонкий он обеспечивает крылья достаточной прочностью на изгиб. Также в конструкцию часто входят дополнительные лонжероны для уменьшения лобового сопротивления в передней части задней кромки. Они способны воспринимать как изгибающие нагрузки, так и увеличивать жесткость при кручении. Наконец передняя кромка может быть отодвинута назад за лонжерон для получения закрытого поперечного каркаса, который называется D-образным и служит для восприятия крутильных нагрузок. На рисунке наиболее часто встречающиеся профиля.

  1. Верхнее крыло имеет лонжерон двутаврового сечения, у которого каркас располагается в центре, а также переднюю кромку с обшивкой, которая называется D – трубкой. D – трубка позволяет увеличить жесткость при кручении, и может быть добавлена к любым другим конструкциям лонжеронов, а также может быть расширена до задней кромки для создания полностью обшитого крыла. У данного крыла задний лонжерон просто является вертикальной опорой. Также имеется простая плоскость управления, проще говоря, закрылок, подвешенный шарнирно вверху. Такую конструкцию легко воспроизвести.
  2. Второе крыло имеет C – образный лонжерон, который имеет усиленный основной лонжерон, лучше приспособленный для восприятия лобовых нагрузок. Крыло снабжено центральным шарниром, который уменьшает щель, а также лобовое сопротивление по сравнению с верхним шарниром.
  3. У третьего профиля лонжерон в виде трубы, такие обычно делаются из пластиковых трубок, их удобно изготовлять, но если трубки непрямые или скрученные, то скрутить крыло может стать проблемой. Частично проблему можно решить, используя дополнительно D – образную трубку. Кроме того, лонжерон сделан из С – образного профиля, что значительно увеличивает жесткость крыла. Петля представляет собой округленный профиль с точкой разворота в центре закругленной передней кромки для уменьшения петельной щели и для ровных краев.
  4. Четвертый профиль имеет полностью коробчатый лонжерон с каркасом как спереди, так и сзади. Зазор имеет ту же особенность, что и предыдущий профиль, и ту же самую плоскость управления. Но у него есть обтекатели сверху и снизу для скрытия щели.

Все эти конструкции крыльев являются типовыми для лонжеронов и для создания крепежных петель у радиоуправляемых самолётов. Эти конструкции без исключения являются единственным способом технической реализации закрылков и элеронов, а другие различные решения можно подогнать к ним же.

C – образный или коробчатый лонжерон?

Для своего самолёта я выбрал деревянный C – образный профиль лонжерона с прочной передней кромкой и простым вертикальным лонжероном. Полностью крыло обшито бальзой для создания жесткости при кручении и для эстетики.

Дерево было выбрано взамен пластиковой трубки поскольку самолёт спроектирован с 2 градусным внутренним углом, а соединение в виде пластиковой трубки в центре крыла не сможет долго сопротивляться изгибающим нагрузкам. C – образный профиль лонжерона является также более благоприятным по сравнению с двутавровым профилем, поскольку в лонжероне должен быть сделан слот на всю его длину для установки в решетку. Эта добавленная сложность не за счет заметного увеличения прочности и соотношения веса лонжерона. Коробчатый лонжерон также был отвергнут, поскольку он сильно увеличивает вес, однако, его не так сложно построить, а по прочности он один из лучших. Простой вертикальный лонжерон, совмещенный с петлевым обтекателем, вот таким был выбор конструкции крыла, когда остальная часть крыла обшита и достаточно прочна без каких либо дополнительных опор.

  • Лонжерон. Лонжерон крыла спроектирован для восприятия изгибающей нагрузки от подъёмной силы крыла. Он не предназначен для восприятия скручивающей силы, созданной аэродинамическими силами крыла, а нагрузка ложится на обшивку крыла. Это распределение нагрузки подходит для легкой и очень эффективной нагрузки, поскольку каждая деталь занимает именно своё место.
  • Полки лонжеронов крыла выполнены из броска липы размерами ¼ x ½ x 24’’. Липа была выбрана в качестве материала, поскольку хорошо обрабатывается и имеет хорошую прочность для своего веса. Кроме того, подкупает простота приобретения брусков подходящего размера в специализированных магазинах, поскольку у меня не было под рукой деревообрабатывающего станка для распиловки досок.
  • Каркас крыла сделан из липового листа, толщиной 1/32”, который крепится к полкам лонжеронам сверху и снизу. Подобный каркас является необходимостью поскольку он кардинально улучшает жесткость и прочность крыльев даже при очень малом весе.
  • Задняя кромка крыла/задний лонжерон выполнен из бальзового листа толщиной 1/16”, что помогает добавить жесткость при кручении, а также унифицировать нервюры крыла и крепить плоскости управления к задней части нервюр.

Проектирование нервюр с помощью AutoСAD

Оказывается, изготовление нервюр для трапециевидного крыла может стать вдохновляющим занятием. Есть несколько методов: первый метод основан на вырезании профиля крыла по трафарету сначала для корневой части, а потом для законцовки крыла. Он заключается в сочленении обоих профилей вместе с помощью болтов и вычерчивании по ним всех остальных. Этот метод особенно хорош для изготовления прямых крыльев. Основное ограничения метода – он подходит только для крыльев с незначительным сужением. Проблемы возникают из-за резкого роста угла между профилями при значительной разнице между хордой законцовки и хордой корня крыла. В этом случае во время сборки могут сложности из-за большого отхода дерева, острых углов и краёв нервюр, которые надо будет удалить. Поэтому я воспользовался своим методом: сделал свои собственные шаблоны для каждой нервюры, а затем обработал их так, чтобы получить идеальную форму крыла. Задача оказалась сложнее, чем я ожидал, поскольку шаблон корневой части отличался от законцовки кардинально, а все профиля между ними были комбинацией двух предыдущих, вместе с кручением и растяжением. В качестве программы проектирования я использовал Autodesk AutoCAD 2012 Student Addition, поскольку съел на этом собаку при моделировании RC моделей самолётов в прошлом. Проектирование нервюр происходит в несколько этапов.

Всё начинается с импорта данных. Самый быстрый способ для импорта аэродинамического профиля (профили можно найти в базах данных UIUC аэродинамических профилей) в AutoCAD, который я нашел, заключается в создании табличного файла в формате excel в виде таблицы с колонками координат точек профиля x и y. Единственное, что следует перепроверить — соответствуют ли первая и последняя точка друг другу: получается ли у вас замкнутый контур. Затем скопировать полученное назад в txt файл и сохранить его. После того, как это проделано, следует вернуться назад и выделить всю информацию на предмет, если вы случайно вставили заголовки. Затем в AutoCAD запускается команда «spline» и «paste» для обозначения первой точки эскиза. Жмем «enter» до конца выполнения процесса. Аэродинамический профиль в основном обрабатывается таким образом, что каждая хорда становится отдельным элементом, это весьма удобно для изменения масштаба и геометрии.

Рисование и взаимное расположение профилей в соответствие плану. Передняя кромка и лонжероны должны быть тщательно доведены до нужного размера, при этом надо помнить про толщину обшивки. На чертеже, следовательно, лонжероны должны быть нарисованы уже, чем они есть на самом деле. Желательно сделать лонжероны и переднюю кромку выше, чем они есть на самом деле, для того, чтобы рисунок лег ровнее. Также пазы на лонжеронах должны быть расположены таким образом, чтобы оставшаяся часть лонжерона уместилась в нервюрах, но осталась при этом квадратной.

На рисунке показаны основные аэродинамические профиля перед тем, как они будут разбиты на промежуточные.

Лонжерон и совместная с ним передняя кромка соединены вместе, чтобы потом их можно было исключить из построения.

Аэродинамические профили сопряжены вместе и образуют форму крыла при видимом лонжероне и передней кромке.

Лонжерон и передняя кромка удалены с помощью операции «subtract», остальные части крыла показаны.

Крыло вытягивается с помощью функции «solidedit» и «shell». Далее выделяются поочередно плоскости корневой части крыла и законцовки, удаляются, а то, что получается и есть обшивка крыла. Поэтому внутренняя часть обшивки крыла является основой для нервюр.

С помощью функции «плоскость сечения» формируются эскизы каждого профиля.

После этого под командой «плоскость сечения» выбирается создание раздела. С помощью этой команды созданные профили во всех точках профиля могут быть отображены. Для помощи в выравнивании нервюр крыльев я строго рекомендую создать на каждом сечении горизонтальную линию от задней кромки крыла до передней. Это позволит правильно выровнять крыло, если оно построено с кручением, а также сделать его прямым.

Поскольку эти шаблоны на самом деле созданы с учетом обшивки крыльев, внутренняя линия профилей является правильной линией для построения нервюр.

Теперь, когда все нервюры промаркированы с помощью команды «text», они готовы к печати. На каждой странице с нервюрами я разместил схематически коробку с площадкой, доступной для печати на принтере. Маленькие нервюры можно печатать на толстой бумаге, а для крупных аэродинамических профилей подойдет обычная бумага, которая затем усиливается перед вырезанием.

Комплектация деталей

После конструирования крыла, анализа и подбора всех необходимых для изготовления авиамодели деталей, был сделан список всего необходимого для постройки.

где -удлинение крыла,

L – размах крыла, м, L=8 м,

S – площадь крыла, м 2 , S=12 м 2.

где η - сужение крыла

b o - корневая хорда, м, b o = 5,43 м,

b k - концевая хорда, м, b k =2,5 м.

Удлинение крыла

Угол стреловидности: 0 0

      Определение нагрузок, действующих на крыло

Нагрузки, действующие на крыло: для заданного случая нагружения определяем коэффициенты безопасности и максимальной эксплуатационной перегрузки. Величины эксплуатационных перегрузок в зависимости от максимального скоростного напораи полётной массыопределим по таблице типов самолетов.

Для данного типа самолёта принимаем n э = 8.

Исходя из случая нагружения, коэффициент безопасности выбираем f=2.

Расчётную перегрузку определим по формуле .

Следовательно n р = 8 × 2 = 16.

Случай соответствует криволинейному полёту с(отклоненные элероны или выход из пикирования) и с максимально возможной скоростью, соответствующей скоростному потокуq max . max . Заданными величинами являются ,;.

Этот случай характерен для нагружения хвостовой части крыла. Вследствие перемещения назад центра давления на крыло действует значительный крутящий момент.

Расчетная аэродинамическая нагрузка прямого крыла определяется по формуле:

где G – вес самолета, кг, G = 17000 кг,

относительная циркуляция по размаху прямого крыла, учитывающая изменение коэффициента подъемной силы крыла по размаху и сужению крыла.

Для стреловидного крыла значение должно быть уточнено поправкой, учитывающей стреловидность крыла. Значения величиниснимаем с графиков. Тогдарассчитываем по формуле:

Массовые силы конструкции крыла определяем по формуле:

где - вес крыла,= 0,11.

Массовые силы от веса топлива определяем по формуле:

где - вес топлива,,кг.

Все расчеты сводим в таблицу 1.

Таблица 1

Величина

По расчетным данным строим эпюру расчетной аэродинамической погонной нагрузки, эпюру расчетной массовой погонной нагрузки, эпюру расчетной суммарной погонной нагрузки (рис. 1).

Рис.1 Эпюры ,и

      Построение расчетных эпюр

Исходными данными для расчета крыла на прочность являются эпюры перерезывающих сил , изгибающихи крутящих моментов, построенные вдоль размаха крыла.

При построении эпюр крыло представляют как двухопорную балку с консолями, нагруженную распределенными и сосредоточенными силами. Опорами являются узлы крепления крыла к фюзеляжу.

Определяем реакции опор:

Эпюры,нужно строить от суммарной нагрузки

Используя дифференциальные зависимости:

получаем выражения идля любого сечения крыла:

Для каждого участка находим приращение перерезывающей силы:

.

Суммируя значения от свободного конца и учитывая значения сосредоточенных грузов и реакций фюзеляжа, получаем значение перерезывающей силы в произвольном- ом сечении крыла

.

Аналогично определяем значение изгибающего момента в любом сечении крыла:

, .

Приняв количество сечений i = 10, ∆z = 0,5 м.

С учётом стреловидности крыла перерезывающую силу и изгибающий момент определим по формулам:

где - угол стреловидности.

Результаты сведены в таблицу 2.

Таблица 2

По полученным данным строим эпюру изгибающих моментов (рис.2).

Для построения эпюр крутящих моментов, истинный крутящий момент должен быть определён относительно центра изгиба (жёсткости). Примем координату положения линии центров изгиба (жёсткости):

х ж = 0,38в СЕЧ.

Тогда а = 0,2b СЕЧ, а 1 = 0,4b СЕЧ.

Погонный крутящий момент в любом сечении относительно линии центров изгиба, оси определяется следующим образом:

Полный крутящий момент будет равен:

При наличии стреловидности :.

Эпюра строится только до борта фюзеляжа. При определениитакже удобно пользоваться методом трапеций с применением таблицы 3:

Где ; .

Таблица 3

Рис. 2 Эпюры погонного крутящего момента m и крутящего момента .

      Проектировочный расчет крыла

На данном этапе подберём величины площади поперечных сечений силовых элементов крыла. Силовая схема крыла – двухлонжеронная, аэродинамический профиль сечения NASA2411 .

Определяем угол конусности крыла:

где -относительная толщина профиля.

Отсюда .

Перерезывающая сила в расчетном сечении равна:

где и-высота первого и второго лонжеронов,

Модуль упругости материалов поясов.

От перерезывающих сил в стенках лонжеронов действуют погонные касательные силы:

Погонные касательные силы в стенках лонжеронов от крутящего момента:

где -площадь контура межлонжеронной части сечения.

Суммарные касательные потоки в стенках лонжеронов от перерезывающих сил и крутящих моментов:

Толщины стенок лонжеронов и обшивки определяются по следующим формулам:

где - разрушающее касательное напряжение.

Берем шаг стрингеров 118 мм, получаем количество стрингеров

Определяем силы, действующие на верхней и нижней панелях крыла:

Где высота сечения,

Число стрингеров,

Ширина межлонжеронной части крыла.

Коэффициент 0,9 в величине учитывает ослабление обшивки отверстиями под заклепки.

Суммарная площадь растянутых и сжатых поясов лонжеронов:

Для сжатых поясов,

- для растянутых поясов,

где принимаем равным.

В полете крыло нагружается аэродинамической распределенной нагрузкой и массовой силой от веса собственной конструкции крыла и размещенного в нем топлива.

Аэродинамическая нагрузка распределяется по размаху крыла по закону, близкому к параболическому. Для упрощения заменим его трапециевидным законом (Рис. 2.2). Если принять допущение, что С y постоянен по размаху крыла, то закон изменения аэродинамической силы q az пропорционален хорде крыла b z:

где Y - подъемная сила создаваемая крылом;

S k - несущая площадь полукрыльев, равная S k = S - b 0d ф = 61;

d ф - диаметр фюзеляжа;

b 0 - хорда корневой нервюры;

b z - значение текущей хорды.

Значение текущей хорды крыла bz вычислим из предлагаемой формулы:

где b к - хорда концевой нервюры;

Длина полукрыла без центроплана, равная;

Подставив в (3.10) уравнение (3.11), получим:

Считаем, что топливо распределено по крылу равномерно, тогда распределенная нагрузка от массовых сил крыла (его собственного веса и топлива) изменяется по его размаху тоже пропорционально хорде b z:

где m k - масса конструкции полукрыльев, равная m k = m k m взл = 1890;

m Т - масса топлива, равная m Т = 0,85m Tmax = 3570 ;

g - ускорение свободного падения, равная g = 9,81.


Рис.

Произведем расчет распределенных аэродинамических q az и массовых нагрузок q крz в концевой, корневой части крыла и (к примеру) в районе элеронов:

1) Расчет распределенной нагрузки на конце крыла, т.е. при Z= 0:

2) Расчет распределенной нагрузки в корневом сечении, т.е. при Z== 13,23:

3) Расчет распределенной нагрузки в районе двигатели+шасси, т.е. при Z=l 1 =1,17

5665,94-2142,07=3523,87Н/м


Рис. 2.3. Схема возникновения крутящего момента в сечении крыла

Поэтому погонный крутящий момент от распределенных аэродинамических q az и массовых сил крыла q крz равен:

Нм/м (3.15)

Приводим подобные, и получим:

Нм/м (3.16)

Обычно топливо в крыле расположено в передней части крыла, поэтому ц.м. топлива совпадает с ц.м. крыла. С учетом этого предположения формула (3.15) будет иметь вид:

Нм/м (3.17)

Подставим известные величины в формулу (3.17), получим:

Нм/м (3.18)

Теперь произведем расчет крутящего момента в концевой, корневой части крыла и в районе элеронов:

1) Расчет крутящего момента на конце крыла, т.е. при Z= 0:

2) Расчет крутящего момента в корневой части крыла, т.е. при Z= 13,23:

3) Расчет крутящего момента в районе двигателя+шасси, т.е. при Z= 1,17:

Кроме распределенных сил от аэродинамических и массовых сил, крутящий момент создают и сосредоточенные силы от масс двигателей. Так как по условиям задачи сила тяги двигателей, а также сила реверса равны нулю, то сосредоточенный момент будут создавать только силы, возникающие от масс двигателей, установленных на крыле.


Рис.

Из рисунка видно, что равен (знак «минус» означает, что момент направлен в противоположную сторону, против часовой стрелки):

(Нм ), (3.19)

где - расстояние от ц.м. двигателя до ц.ж. крыла.

Так как двигатели находятся на разном расстоянии от ц.ж. крыла, то и моменты они будут создавать разные. По известным данным найдем: