Редуктор подвесного лодочного мотора не имеет переключения передач, то есть передаточное число постоянно. Чтобы максимально эффективно реализовать мощность двигателя, нужно правильно подобрать гребной винт, то есть найти такие параметры, при которых достигается:
  • лучший выход на глиссирование;
  • максимальные обороты двигателя в пределах, установленных заводом - изготовителем;
  • максимальная скорость либо грузоподъёмность (в зависимости от требуемого результата).
Помимо очевидных показателей, оптимальный винт способствует:
  • экономии топлива;
  • увеличению ресурса мотора;
  • снижению шумности двигателя.

Разновидности гребных винтов

Разнообразие марок, моделей и мощностей лодочных моторов требует огромного количества гребных винтов. Они различаются по:

  • шагу (расстоянию, которое проходит винт за один оборот без учёта скольжения);
  • диаметру (окружности, описываемой наиболее удалёнными от центра точками лопастей);
  • дисковому отношению (отношению суммарной площади лопастей к площади круга с диаметром, равным диаметру винта);
  • количеству лопастей (обычно 3, реже 4 или 2);
  • материалу (сталь углеродистая и нержавеющая, алюминиевый сплав, пластик);
  • конструкции ступицы (резиновый демпфер, сменная втулка, сменные лопасти);
  • конструкции ступицы (выхлоп через ступицу или под антикавитационной плитой);
  • диаметру ступицы;
  • количеству шлицов втулки.

Маркировка винтов

Наносится на ступицу или лопасти, используются дюймовые размеры.

Обычно выглядит следующим образом:

11 ¼ х 15 – G – такую маркировку наносит на свой винт Ямаха .

Первое число обозначает диаметр лопастей, второе число – шаг винта.

Некоторые производители добавляют в маркировку количество лопастей и направление вращение винта, например:

13 х 19 3RH, или 3 х 10-3/8 х 11 R, где цифра «3» - количество лопастей, RH или R – правое вращение.

Если на винт нанесен только номер по каталогу, например, 3231-100-15, то расшифровка пишется на упаковке:

  • Material: Stainless Steel
  • Pitch (шаг): 15
  • Blade (лопасти):
  • Diameter: 10
  • Engine (мотор): Yamaha

Расчет гребного винта

Существует множество программ для расчета параметров гребного винта глиссирующего судна. Некоторые из них способны справиться с поставленной задачей с приемлемой точностью, например, используя диаграммы Папмеля, однако окончательный подбор характеристик производится эмпирическим путём, то есть методом тестовых заездов.

Для точного расчета необходимо знать:

  • Размерения судна
  • Килеватость
  • Водоизмещение
  • Размерения в зоне ватерлинии
  • Наличие и расположение реданов
  • Мощность и максимальные обороты двигателя
  • Редукцию и многие другие параметры.

Наша задача – научиться рассчитывать с приемлемой точностью требуемые параметры алюминиевого винта под имеющуюся глиссирующую моторную лодку, располагая минимумом информации.

Для этого нам понадобятся следующие данные:

  1. Желаемая максимальная скорость. Указывается в паспорте на лодку или берется от аналогичных комплектов. Естественно, не стоит указывать скорость 70 км/ч, имея мотор 30 л/с на прогулочной лодке, нужно рассматривать реальные значения.
  2. Обороты максимальной мощности двигателя. Указаны в табличке, размещенной на струбцине мотора либо в моторном отсеке. Также данные присутствуют на сайтах продавцов лодочных моторов.
  3. Передаточное отношение редуктора (узнаём из инструкции к мотору или из Интернета).

Для расчета шага скоростного винта используем соотношение:

H = 750V/n , где V – скорость в км/ч, n – число оборотов гребного вала.

В качестве примера приведём расчеты для килеватого глиссирующего корпуса длиной 17 футов с подвесным мотором Suzuki DF90ATL.

  • Максимальная частота вращения коленчатого вала: 5300 – 6300 оборотов в минуту;
  • Передаточное отношение: 2,59
  • Максимальную скорость обозначим 68 км/ч.
  1. Находим максимальные обороты гребного вала: 6300: 2,59 = 2432 оборотов в минуту.
  2. Считаем шаг: 750 х 68: 2432 = 20,97". Округляем до 21".

Штатный винт имеет размерность 3 х 13 ¾ х 19, то есть достаточно близко к вычисленному. Его оставляем для движения с полной загрузкой и буксировки лыжника. В качестве скоростного приобретаем 21 шаг.

Поскольку обычно шаг и диаметр винта взаимосвязаны, в рамках одного шага предлагается не более двух – трёх различных диаметров винтов. Поэтому будем руководствоваться следующим правилом: если у нас мотор максимально разрешенной мощности, выбираем больший диаметр, если средней или минимальной – то меньший.

Для точного подбора винта следует взять под залог в магазине несколько винтов с шагом, близким к расчетному. После этого необходимо произвести замеры скорости лодки и оборотов двигателя. Следует заметить, что в некоторых регионах крупные продавцы водно-моторной техники периодически проводят фестивали винтов, где любой желающий может попробовать приглянувшийся винт, а также получить консультацию специалистов.

Выбор оптимального винта

Говоря про соответствие винта мотору и корпусу, можно провести определённую градацию.

  • Тяжёлый винт. Двигатель не развивает полных оборотов, выход на глиссирование затруднен. Необходимо уменьшать шаг.
  • Скоростной винт. Максимальные обороты и скорость достигаются только с малой загрузкой и верхнем положении гидроподъёма («трима»).
  • Универсальный. С минимальной загрузкой мотор развивает максимальные обороты, с полной загрузкой позволяет выйти на глиссирование.
  • Грузовой винт. Позволяет легко выходить на глиссирование с полной загрузкой путём некоторой потери скорости, максимальные обороты достигаются уже со средней нагрузкой.
  • Слишком лёгкий винт. Лодка сильно недобирает в скорости, мотор превышает максимально допустимые обороты (т.н. «перекрут»), срабатывает ограничитель оборотов. В этом случае нужен винт с большим шагом.

Количество лопастей также влияет на ходовые качества комплекта. Наибольшее распространение получили трехлопастные винты, реже встречаются с четырьмя лопастями. Двухлопастные и пятилопастные в повседневной эксплуатации практически не применяются.

В общем случае можно сказать, что четырехлопастной винт будет более грузовым, чем трехлопастной за счёт большего дискового отношения. Обычно его выбирают, когда нужна большая тяга, а поставить винт увеличенного диаметра не позволяет конструкция редуктора.

Вопрос - ответ

Сегодня мы пригласили эксперта, который ответит на наиболее частые вопросы читателей, касающиеся гребных винтов.

-Как проще проверить, насколько подходит к катеру имеющийся винт?

Нужно замерить обороты в «полный газ» с максимальной и минимальной загрузкой. Обороты должны находиться в пределах, рекомендованных изготовителем. Если мотор «недобирает» оборотов – поставьте винт с меньшим шагом, если происходит «перекрут», то есть превышение оборотов – то шаг требуется увеличить.

-Сколько лопастей лучше – 3 или 4?

Смотря что требуется от лодки. Если нужна устойчивая минимальная скорость глиссирования, грузоподъемность, больший упор – то 4 лопасти имеют определенные преимущества. Если важнее скорость налегке – то выбираем винт с тремя лопастями.

Следует иметь в виду, что за счет большего упора обороты четырехлопастного винта будут приблизительно на 100 меньше, чем трехлопастного аналогичного диаметра и шага.

-Какой винт лучше – алюминиевый или стальной?

Опять же, что важнее для пользователя. Если нужна максимальная скорость, возможность максимального увеличения ходового дифферента тримом без возникновения подхвата воздуха, то стальной винт предпочтительнее. Но он сильнее нагружает редуктор за счет большей массы и стоит гораздо дороже.

Для повседневной эксплуатации вполне подходит алюминиевый винт. Относительно недорогой, он обладает весьма достойными гидродинамическими характеристиками, к тому же при ударе о подводное препятствие меньше вероятность повреждения вертикального и гребного валов, а также деталей редуктора за счет более хрупких лопастей.

Если же вы решите провести эксперимент со стальным винтом, следует иметь в виду, что стальной винт нужно брать с шагом на 1" меньше, чем алюминиевый.

-При выходе на глисс такое ощущение, что «буксует сцепление» Как с этим бороться? Винт с виду целый.

Возможно, провернулся демпфер, находящийся между втулкой и ступицей. Попробуйте установить другой винт – ситуация должна измениться.

-Как продлить срок службы винта?

-Обязательно ли использовать оригинальный винт?

Нужно понимать, что многие оригинальные винты сделаны на тех же предприятиях, что и «неоригинал». Существует ряд проверенных производителей, выпускающих качественную замену оригиналу при более низкой цене. Поэтому говорить о необходимости использования именно оригинальных винтов некорректно.

К сожалению, формат статьи не позволяет максимально подробно рассмотреть все нюансы подбора винта, но основные вопросы мы рассмотрели, и теперь при необходимости можем подобрать наиболее подходящий винт для моторной лодки или катера. Тем, кто заинтересовался темой и хочет изучить теорию гребных винтов, можно порекомендовать труды Х. Баадера, Л.Л. Хейфеца, В.В. Вейнберга, а также книгу «Гребные винты. Современные методы расчета» В. Бавина и др.

Как работает гребной винт? Гребной винт преобразует вращение вала двигателя в упор - силу, толкающую судно вперед. При вращении винта на поверхностях его лопастей, обращенных вперед - в сторону движения судна (засасывающих), создается разрежение, а на обращенных назад (нагнетающих)- повышенное давление воды. В результате разности давлений на лопастях возникает сила Y (ее называют подъемной) Разложив силу на составляющие - одну, направленную в сторону движения судна, а вторую перпендикулярно к нему, получим силу Р, создающую упор гребного винта, и силу Т, образующую крутящий момент, который преодолевается двигателем.

Упор в большой степени зависит от угла атаки a профиля лопасти. Оптимальное значение для быстроходных катерных винтов 4-8°. Если a больше оптимальной величины, то мощность двигателя непроизводительно затрачивается на преодоление большого крутящего момента, если же угол атаки мал, подъемная сила и, следовательно, упор Р будут невелики, мощность двигателя окажется недоиспользованной.

На схеме, иллюстрирующей характер взаимодействия лопасти и воды, a можно представить как угол между направлением вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован геометрическим сложением векторов скорости поступательного перемещения Va винта вместе с судном и скорости вращения Vr, т. е. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.


Винтовая поверхность лопасти. На рисунке показаны силы и скорости, действующие в каком-то одном определенном поперечном сечении лопасти, расположенном на каком-то определенном радиусе r гребного винта. Окружная скорость вращения V, зависит от радиуса, на котором сечение расположено (Vr = 2× p × r× n, где n - частота вращения винта, об/с), скорость же поступательного движения винта Va остается постоянной для любого сечения лопасти. Таким образом, чем больше r, т. е. чем ближе расположен рассматриваемый участок к концу лопасти, тем больше окружная скорость Vr, а следовательно, и суммарная скорость W.

Так как сторона Va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы a сохранял оптимальную величину, т. е. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность с постоянным шагом Н. Напомним, что шагом винта называется перемещение любой точки лопасти вдоль оси за один полный оборот винта.

Представить сложную винтовую поверхность лопасти помогает рисунок. Лопасть при работе винта как бы скользит по направляющим угольникам, имеющим на каждом радиусе разную длину основания, но одинаковую высоту - шаг H, и поднимается за один оборот на величину Н. Произведение же шага на частоту вращения (Нn) представляет собой теоретическую скорость перемещения винта вдоль оси.

Скорость судна, скорость винта и скольжение. При движении корпус судна увлекает за собой воду, создавая попутный поток, поэтому действительная скорость встречи винта с водой Va всегда несколько меньше, чем фактическая скорость судна V. У быстроходных глиссирующих мотолодок разница невелика - всего 2 - 5%, так как их корпус скользит по воде и почти не “тянет” ее за собой. У катеров, идущих со средней скоростью хода эта разница составляет 5-8 %, а у тихоходных водоизмещающих глубокосидящих катеров достигает 15-20 %. Сравним теперь теоретическую скорость винта Нn со скоростью его фактического перемещения Va относительно потока воды.

Разность Hn - Va, называемая скольжением, и обуславливает работу по пасти винта под углом атаки a к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах называется относительным скольжением:
s = (Hn-Va)/Hn.

Максимальной величины (100 %) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8-15 %) имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочных мотолодок и катеров скольжение достигает 15-25%, у тяжелых водоизмещающих катеров 20-40 %, а у парусных яхт, имеющих вспомогательный двигатель, 50 - 70%.

Легкий или тяжелый гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода судна.

Каждый двигатель имеет свою так называемую внешнюю характеристику - зависимость снимаемой с вала мощности от частоты вращения коленчатого вала при полностью открытом дросселе карбюратора. Такая характеристика для подвесного мотора “Вихрь”, например, показана на рисунке (кривая 1). Максимум мощности в 21,5 л, с. двигатель развивает при 5000 об/мин.

Мощность, которая поглощается на данной лодке гребным винтом в зависимости от частоты вращения мотора, показана на этом же рисунке не одной, а тремя кривыми - винтовыми характеристиками 2, 3 и 4, каждая из которых соответствует определенному гребному винту, т. е. винту определенного шага и диаметра.

При увеличении и шага, и диаметра винта выше оптимальных значений лопасти захватывают и отбрасывают назад слишком большое количество воды: упор при этом возрастает, но одновременно увеличивается и потребный крутящий момент на гребном валу. Винтовая характеристика 2 такого винта пересекается с внешней характеристикой двигателя 1 в точке А. Это означает, что двигатель уже достиг предельного - максимального значения крутящего момента и не в состоянии проворачивать гребной винт с большой частотой вращения, т. е. не развивает номинальную частоту вращения и соответствующую ей номинальную мощность. В данном случае положение точки А показывает, что двигатель отдает всего 12 л. с. мощности вместо 22 л. с. Такой гребной винт называется гидродинамически тяжелым.

Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому двигатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть, что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт называется гидродинамически легким.

Гребной винт, позволяющий для конкретного сочетания судна и двигателя полностью использовать мощность последнего, называется согласованным . Для рассматриваемого примера такой согласованный винт имеет характеристику 3, которая пересекается с внешней характеристикой двигателя в точке В, соответствующей его максимальной мощности.

Рисунок иллюстрирует важность правильного подбора винта на примере мотолодки "Крым" с подвесным мотором “Вихрь”, При использовании штатного винта мотора с шагом 300 мм мотолодка с 2 чел. на борту развивает скорость 37 км/ч. С полной нагрузкой 4 чел, скорость лодки снижается до 22 км/ч. При замене винта другим с шагом 264 мм скорость с полной нагрузкой повышается до 32 км/ч. Наилучшие же результаты достигаются с гребным винтом, имеющим шаговое отношение H/D = 1,0 (шаг и диаметр равны 240 мм): максимальная скорость повышается до 40-42 км/ч, скорость с полной нагрузкой - до 38 км/ч. Несложно сделать вывод и о существенной экономии горючего, которую можно получить с винтом уменьшенного шага Если со штатным винтом при нагрузке 400 кг расходуется 400 г горючего на каждый пройденный километр пути, то при установке винта с шагом 240 мм расход горючего составит 237 г/км.

Следует заметить, что согласованных винтов для конкретного сочетания судна и мотора существует бесконечное множество. В самом деле, винт с несколько большим диаметром, но несколько меньшим шагом нагрузит двигатель так же, как и винт с меньшим диаметром и большим шагом. Существует правило: при замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами D и H (расхождение допустимо не более 10%), требуется, чтобы сумма этих величин для старого и нового винтов была равна.

Однако из этого множества согласованных винтов только один винт, с конкретными значениями D и H, будет обладать наибольшим КПД. Такой винт называется оптимальным . Целью расчёта гребного винта как раз и является нахождение оптимальных величин диаметра и шага.

Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД, т. е. отношения полезно используемой мощности к затрачиваемой мощности двигателя.

Не вдаваясь в подробности, отметим, что главным образом КПД некавитирующего винта зависит от относительного скольжения винта, которое в свою очередь определяется соотношением мощности, скорости, диаметра и частоты вращения.

Максимальная величина КПД гребного винта может достигать 70 ~ 80 %, однако на практике довольно трудно выбрать оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых судах КПД реальных винтов может оказаться много ниже, составлять всего 45 %.

Максимальной эффективности гребной винт достигает при относительном скольжении 10 - 30 %. При увеличении скольжения КПД быстро падает: при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.

Однако следует еще учесть взаимовлияние корпуса и винта. При работе гребной винт захватывает и отбрасывает в корму значительные массы воды, вслед ствие чего скорость потока, обтекающего кормовую часть корпуса повышается, а давление падает. Этому сопутствует явление засасывания, т. е. появление до полнительной силы сопротивления воды движению судна по сравнению с тем, которое оно испытывает при буксировке. Следовательно, винт должен развивать упор, превышающий сопротивление корпуса на некоторую величину Рe = R/(1-t) кг. Здесь t - коэффициент засасывания, величина которого зависит от скорости движения судна и обводов корпуса в районе расположения винта. На глиссирующих катерах и мотолодках, на которых винт расположен под сравнительно плоским днищем и не имеет перед собой ахтерштевня, при скоростях свыше 30 км/ч t = 0,02-0,03. На тихоходных (10-25 км/ч) лодках и катерах, на которых гребной винт установлен за ахтерштевнем, t = 0,06-0,15.

В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w: Va = V (1-w) м/с. Значения w нетрудно определить по данным, приведенным выше.

Общий пропульсивный КПД комплекса судно-двигатель-гребной винт вычисляется по формуле:
h = h p Ч ((1-t)/(1-w))Ч h m = h p Ч h k Ч h m Здесь h p - КПД винта; h k - коэффициент влияния корпуса; h m - КПД валопровода и реверс - редукторной передачи.

Коэффициент влияния корпуса нередко оказывается больше единицы (1,1 - 1,15), а потери в валопроводе оцениваются величиной 0,9-0,95.

Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать, лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму лопастей. Для предварительного определения диаметра и шага винта существуют упрощенные формулы, приводить которые здесь нет смысла, т.к. предлагается воспользоваться более точными методами расчёта оптимального винта . Эти методы основаны на апроксимации (приближённом представлении) графических диаграмм аналитическими зависимостями, что позволяет выполнять достаточно точные расчёты на ЭВМ и даже на микрокалькуляторах.

Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов, обычно увеличивают примерно на 5 % с тем, чтобы получить заведомо тяжелый винт и добиться его согласованности с двигателем при последующих испытаниях судна. Для "облегчения" винта его постепенно подрезают по диаметру до получения номинальных оборотов двигателя при расчетной скорости.

Однако для винтов маломерных судов этого можно и не делать. Причина проста: загрузка прогулочных судов меняется в широких пределах, и винт, немного "тяжеловатый" или "легковатый" при одном значении водоизмещения судна, станет согласованным при другой загрузке.

Кавитация и особенности геометрии гребных винтов малых судов. Высокие скорости движения мотолодок и катеров и частота вращения винтов становятся причиной кавитации - вскипания воды и образования пузырьков паров в области разрежения на засасывающей стороне лопасти. В начальной стадии кавитации эти пузырьки невелики и на работе винта практически не сказываются. Однако когда эти пузырьки лопаются, создаются огромные местные давления, отчего поверхность лопасти выкрашивается. При длительной работе кавитирующего винта такие эрозионные разрушения могут быть настолько значительными, что эффективность винта снизится.

При дальнейшем повышении скорости наступает вторая стадия кавитации. Сплошная полость - каверна, захватывает всю лопасть и даже может замыкаться за ее пределами. Развиваемый винтом упор падает из-за резкого увеличения лобового сопротивления и искажения формы лопастей.

Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти, несмотря на дальнейшее повышение частоты вращения. Гребной винт при этом издает специфический шум, на корпус передается вибрация, лодка движется скачками.

Момент наступления кавитации зависит не только от частоты вращения но и от ряда других параметров. Так, чем меньше площадь лопастей, больше толщина их профиля и ближе к ватерлинии расположен винт, тем при меньшей частоте вращения, т. е. раньше наступает кавитация. Появлению кавитации способствует также большой угол наклона гребного вала, дефекты лопастей - изгиб, некачественная поверхность.

Упор, развиваемый гребным винтом, практически не зависит от площади лопастей. Наоборот, с увеличением этой площади возрастает трение о воду и на преодоление этого трения дополнительно расходуется мощность двигателя. С другой стороны, надо учесть, что при том же упоре на широких лопастях разрежение на засасывающей стороне меньше, чем на узких. Следовательно, широколопастной винт нужен там, где возможна кавитация (т. е. на быстроходных катерах и при большой частоте вращения гребного вала).

В качестве характеристики винта принимается рабочая, или спрямленная, площадь лопастей. При ее вычислении принимается ширина лопасти, замеренная на нагнетающей поверхности по длине дуги окружности на данном радиусе, проведенном из центра винта. В характеристике винта указывается обычно не сама спрямленная площадь лопастей А, а ее отношение к площади Аd сплошного диска такого же, как винт, диаметра, т. е. A/Ad. На винтах заводского изготовления величина дискового отношения выбита на ступице.

Для винтов, работающих в докавитационном режиме, дисковое отношение принимают в пределах 0,3 - 0,6. У сильно нагруженных винтов на быстроходных катерах с мощными высокооборотными двигателями A/Ad увеличивается до 0,6 - 1,1. Большое дисковое отношение необходимо и при изготовлении винтов из материалов с низкой прочностью, например, из силумина или стеклопластика. В этом случае предпочтительнее сделать лопасти шире, чем увеличить их толщину.

Ось гребного винта на глиссирующем катере расположена сравнительно близко к поверхности воды, поэтому нередки случаи засасывания воздуха к лопастям винта (поверхностная аэрация) или оголения всего винта при ходе на волне. В этих случаях упор винта резко падает, а частота вращения двигателя может превысить максимально допустимую. Для уменьшения влияния аэрации шаг винта делается переменным по радиусу - начиная от сечения лопасти на r = (0,63-0,7) R по направлению к ступице шаг уменьшается на 15~20%.

Гребные винты катеров имеют обычно большую частоту вращения, поэтому вследствие больших центробежных скоростей происходит перетекание воды по лопастям в радиальном направлении, что отрицательно сказывается па КПД винта. Для уменьшения этого эффекта лопастям придают значительный наклон в корму -от 10 до 15° .

В большинстве случаев лопастям винтов придается небольшая саблевидность - линия середин сечений лопасти выполняется криволинейной с выпуклостью, направленной по ходу вращения винта. Такие винты благодаря более плавному входу лопастей в воду отличаются меньшей вибрацией лопастей, в меньшей степени подвержены кавитации и имеют повышенную прочность входящих кромок.

Наибольшее распространение среди винтов малых судов получил сегментный плосковыпуклый профиль. Лопасти винтов быстроходных мотолодок и катеров, рассчитанных на скорость свыше 40 км/ч, приходится выполнять возможно более тонкими с тем, чтобы предотвратить кавитацию. Для повышения эффективности в этих случаях целесообразен выпукловогнутый профиль ("луночка"). Стрелка вогнутости профиля принимается равной около 2 % хорды сечения а относительная толщина сегментного профиля (отношение толщины t к хорде b на расчетном радиусе винта, равном 0,6R) принимается обычно в пределах t/b = 0,04-0,10.

Двухлопастной гребной винт обладает более высоким КПД, чем трехлопастной, однако при большом дисковом отношении весьма трудно обеспечить необходимую прочность лопасти такого винта. Поэтому наибольшее распространение на малых судах получили трехлопастные винты. Винты с двумя лопастями применяют на гоночных судах, где винт оказывается слабо нагруженным, и на парусно - моторных яхтах, где двигатель играет вспомогательную роль. В последнем случае имеет значение возможность устанавливать винт в вертикальном положении в гидродинамическом следе ахтерштевня для уменьшения его сопротивления при плавании под парусами.

Выбор гребного винта – это актуальный вопрос для всех людей, использующих моторные плавательные средства. Без него невозможна полноценная и максимальная реализация возможностей двигателя, поскольку на лодках он не имеет возможности переключения передач.

Использование правильно подобранного устройства позволяет получить следующие преимущества:

  1. Уменьшение расхода топлива.
  2. Понижение шумового фона.
  3. Улучшение производительности двигателя.
  4. Возможность достижения большей скорости или повышения показателей грузоподъемности.
  5. Уменьшение сопротивления воды во время движения лодки.

Разновидности

Для выбора и приобретения наиболее подходящего гребного винта первоначально следует разобраться в существующих классификациях. Имеется множество различных критериев для их деления, самые значимые из них рассмотрены ниже:

  1. Показатель расстояния, которое винт способен преодолеть при совершении одного оборота. Данный критерий называется шагом, скольжение при этом не учитывается.
  2. Диаметр – это крайние точки окружности , которая создается при вращении лопастей.
  3. Соотношение общей площади всех лопастей и площади диаметра , данный критерий обычно называют дисковым отношением.
  4. Число лопастей, которое может составлять 2, 3, 4 или 5 штук в зависимости от особенностей конструкции выбранной модели. На сегодняшний день наиболее распространены трехлопастные варианты.
  5. Материал, который использовался для изготовления. Чаще всего встречаются модели из различных алюминиевых сплавов, углеродистой стали, латуни, нержавеющей стали или пластика. Меньшей популярностью пользуются бронзовые устройства, поскольку они отличаются слишком высокой стоимостью при отсутствии видимых преимуществ перед аналогами из латуни. Пластиковые модели изготавливаются из современного и прочного материала, но металлические варианты все равно остаются более надежными и отличаются длительным эксплуатационным сроком.
  6. Особенности конструкции ступицы , от которых также зависит способ выведения выхлопов.

Маркировка

На каждом гребном винте обязательно присутствует специальная маркировка, которая может быть нанесена на его лопасти или непосредственно на ступицы; все размеры указываются в дюймах.

Маркирование устройств на сегодняшний день осуществляется разными способами, наиболее распространенные примеры приведены ниже:

  1. 1¼х15–G – в данном примере имеется два числовых значения, они обозначают показатели диаметра лопастей и шага устройства.
  2. 3х10-3/8х11R – является более детализированной маркировкой, которая показывает, что устройство оснащено тремя лопастями и обладает правосторонним вращением.
  3. 3213-101-14 – является каталожной маркировкой, расшифровка артикулов должна присутствовать в прилагаемой инструкции или на упаковке.


Делаем расчеты

На сегодняшний день существует большое количество различного программного обеспечения, которое позволяет рассчитывать оптимальные параметры гребного винта с учетом задаваемых показателей.

Считается, что наиболее точным расчеты формируются программами, которые для этих целей задействуют диаграммы Пампеля. Однако даже в таком случае допускаются погрешности, поэтому окончательный подбор показателей осуществляется только путем тестовых заводов.

Для получения наиболее точных расчетов необходимо учитывать следующие значимые факторы:

  1. Размеры и вес плавательного средства.
  2. Особенности формы днища моторной лодки.
  3. Объем воды, который вытесняется лодкой.
  4. Наличие продольных или поперечных реданов, снижающих сопротивление.
  5. Рабочие показатели двигателя.
  6. Показатели редукции.

Основная задача заключается в получении навыка осуществлять максимально точные расчеты при наличии минимального объема информации. Для этого потребуется располагать следующими сведениями:

  1. Передаточное отношение редуктора , которое можно посмотреть в документации, прилагаемой к двигателю.
  2. Обороты максимальной мощности мотора. Эти сведения наносятся непосредственно на двигатель или в моторном отсеке, при их отсутствии данную информацию можно уточнить у производителя или посмотреть на его официальном сайте.
  3. Максимальная скорость, которую предполагается достичь. Необходимо приводить реальные показатели, которые можно получить при сопоставлении мощности двигателя и особенностей лодки.

Для расчета шага обычно используется следующая формула:

(750х (желаемая максимальная скорость)) / количество оборотов вала.

Для точного подбора устройства полученный показатель шага необходимо использовать следующим образом:

  1. Диаметр устройства и ее шаг являются взаимосвязанными показателями, но даже при известном шаге будет присутствовать около 2-3 моделей с различными диаметрами. Здесь необходимо учитывать максимально разрешенную мощность двигателя: чем она выше, тем больше должен быть диаметр винта.
  2. При наличии возможности рекомендуется попросить продавца провести тестовые испытания или взять под залог винт с шагом, который соответствует не только рассчитанному показателю, но и близкими к нему значениями. Это позволит на практике проверить правильность расчетов путем замеров скорости и выбрать наиболее подходящий вариант.

Как увеличить улов рыбы?

За 7 лет активного увлечения рыбалкой мною найдены десятки способов улучшить клев. Приведу самые эффективные:

  1. Активатор клева . Эта феромоновая добавка сильнее всех приманивает рыбу в холодной и теплой воде. .
  2. Повышение чувствительности снасти. Читайте соответствующие руководства по конкретному типу снасти.
  3. Приманки на основе феромонов .

Правила выбора

Критерии выбора

Помимо рассчитанных показателей существует еще большое количество особенностей, на которые необходимо обратить внимание при выборе гребного винта:

  1. Число лопастей будет оказывать влияние в первую очередь на ходовые качества. Рекомендуется выбирать трехлопастные модели, варианты с 2 или 5 лопастями фактически не используются. Устройства, оснащенные 4 лопастями, применяются при наличии необходимости тяги. Их задействование является целесообразным при нужде в повышенной грузоподъемности, если особенности редуктора не позволяют увеличить винтовой диаметр.
  2. Форма лопастей также должна быть подобрана правильно, здесь в первую очередь учитывается, что модели с увеличенной кривизной ускоряют кавитацию. К тому же передние кромки не должны быть слишком острыми, это негативно сказывается на рабочих параметрах.
  3. Особое внимание необходимо уделить и материалу гребного винта. Наиболее надежными, прочными и долговечными считаются модели, изготовленные из нержавеющей стали нового поколения. Однако для лодок, оснащенных двигателями с малой мощностью, особенно при их использовании в пресных водоемах, подойдет и устройства, изготовленные из алюминиево-кремниевых или алюминиево-магниевых металлических сплавов.

Как определить подходит ли винт

Понять, подходит ли имеющийся гребной винт, можно сняв замеры оборотов при максимальных и минимальных нагрузках, показатель должен при этом находиться в рамках, определенных производителем.

Ниже приводятся конкретные примеры соответствия и несоответствия выбранных устройств:

  1. При минимальных нагрузках двигатель показывает количество оборотов, заявленное производителем; при максимальных нагрузках не наблюдается серьезного сопротивления движения, имеется возможность выйти на глиссирование. Это свидетельствует об универсальность гребного винта, он был подобран правильно.
  2. Ни при каких нагрузках двигатель не выдает заявленное количество оборотов, возникают проблемы при выходе на глиссирование. Подобная ситуация наглядно демонстрирует, что был выбран винт со слишком большим показателем шага.
  3. Возникают перекруты: мотор совершает слишком большое количество оборотов, превышая показатели, установленные производителем; при этом скорость лодки далека от максимального предела. Это свидетельствует, что требуется винт с более высоким показателем шага.
  4. Правильно подобранный грузовой винт позволит без особых проблем выходить на глиссирование даже при полной загрузке плавательного средства , небольшая потеря скорости в данной ситуации является нормальным явлением.
  5. Максимальные показатели оборотов двигателя и скорости лодки достигаются только при незначительной загрузке плавательного средства и нахождении гидроподъема в верхнем положении , подобные ситуации наблюдаются при установке скоростных винтов.

Защита для гребного винта

Правила эксплуатации

Даже самые прочные и надежные гребные винты отличаются повышенной уязвимостью, это наиболее хрупкая часть лодки. Ниже приведен список правил, соблюдение которые повышает безопасность и положительно сказывается на эксплуатационном сроке устройства:

  1. Реверс разрешено включать только при полной уверенности, что гребному винту хватает глубины. Лучше не рисковать лишний раз и несколько раз оттолкнуться от мелководья при помощи весел.
  2. Необходимо следить за состоянием лопастей , поскольку любые деформации, неровности и выбоины мешают полноценному функционированию винта и способны вывести его из строя.
  3. При прохождении судна возле наиболее проблемных участков водоема , которыми являются мелководья и разнообразные подводные препятствия, нужно не забывать пользоваться гидроподъемом.
  4. Постоянно нужно следить, чтобы гребной винт даже кратковременно не соприкасался с поверхностью дна – это является основным условием для обеспечения длительной службы.

Подводя итоги, можно привести следующие советы, касающиеся гребных винтов и их использования:

  1. Не рекомендуется дополнительно покрывать подобные устройства краской, поскольку при отсутствии у нее водоотталкивающих свойств , поверхность в скором времени начнет сильно шелушиться, что ухудшит функционирование винта. В результате скорость будет падать даже при увеличении количества совершаемых оборотов.
  2. Лучше всего приобретать гребные винты у крупных производителей, которые успели зарекомендовать себя с хорошей стороны и имеют достаточное количество положительных отзывов. Такие компании дают продолжительную гарантию на свое оборудование и зачастую дают предварительно протестировать выбранные модели.
  3. Для обеспечения прямолинейности движения судна можно установить два винта с разным направлением вращения. Необходимо помнить, что монтаж нескольких устройств, имеющих одинаковое вращение, будет способствовать наклону плавательного средства в одну из сторон.