У человека существует множество увлечений. Об одном из них мы бы хотели рассказать вам в данной статье. Это ракетное моделирование, а именно создание действующих копий ракет, которые отправляются в небо.

Ракетное моделирование, как спорт, было признано еще во времена Советского союза. В 1920 году пионеры ракетного моделирования использовали для своих моделей твердотопливные двигателя и разработки Циолковского, Цандера или Королева не могли служить основой для будущих ракет, так как они сами были в эмбриональном состоянии. В то время, запуская примитивные модели ракет, их создатели и не подозревали, что это занятие завоюет большую популярность в 1960 году. Это стало возможным благодаря образовавшейся идеологической почве: первый запуск советского спутника в космос, полет человека в космос и т.д.

На сегодняшний день в России дело с ракетным моделированием обстоит не совсем хорошо. Запустить ракету на высоту 100-150 метров можно, если смастерить ее самостоятельно или купить уже готовую модель. В нашей стране редко проводятся научные фестивали, где можно продемонстрировать свои разработки в ракетном моделировании и запустить свое детище в небо. В Америке же существует Национальное агентство по ракетному моделированию, которое ежегодно проводит до 50 фестивалей и спортивных соревнований, где каждый может продемонстрировать свои научные разработки. Хочу сказать, что некоторые модели ракет могут подняться на высоту до 100 км. Для того чтобы достичь подобного результата, необходимо создать модель ракеты длиной в несколько метров, с тремя ступенями и возможность транспортировать полезный вес (например видео или фотокамеру для съемки ближнего космического пространства).

Вы спросите, а зачем Вы это нам рассказываете? Да потому, что необходимо в России развивать ракетное моделирование, чем мы хуже американцев? Где наши Королевы и Циолковские? На сегодняшний день группа московских ракетостроителей во главе с руководителем А. Фастенковым решила не просто строить модели ракет, но и добиться от правительства полной легализации этого занятия. Также они хотят наладить производство двигателей для любительских ракет.

Что имеет ракетное моделирование сегодня?

Как рассказывает Антон Фастенков, моделировать ракеты он мечтал с самого детства, но в то время у него как-то не сложилось с этим и после окончания школы, он поступил на юридический факультет. Прошел определенный период времени, и Антон создал и оборудовал личную мастерскую для создания моделей ракет. К нему присоединились и другие энтузиасты – А. Юдин, С. Каличкин и А. Дерябин. Так началось серьезное создание первой ракеты.

Команда Фастенкова создала модель ракеты, которая имеет длину 2,2 метра и диаметр 10 см. Корпус данной модели выполнен из дюрали, обтекатель и хвостовые стабилизаторы изготовлены из стеклопластика. Двигатель ракеты работает на смеси твердого топлива и жидкого окислителя. В качестве горючего используется зачерненный парафин, а окислителем является насыщенная кислородом газовая смесь.

В современном ракетном моделировании используются три вида двигателей – твердотопливные, жидкостные и гибридные (смесь твердого топлива и жидкого окислителя). Любой из этих двигателей обладает своими плюсами и минусами. Например, в жидкостных ракетных двигателях можно регулировать силу тяги в широком диапазоне подачи горючих компонентов, но такой силовой агрегат требует серьёзного технического подхода в разработке и выборе горючего.

Тягу регулировать в твердотопливных двигателях также можно при изменении критического сечения, что требует механизации соплового блока. Такие двигатели имеют широкое распространение, так обладают простой конструкцией. В таких моделях топливный бак является камерой сгорания. Единственным недостатком этого вида ракетных двигателей является то, что при старте процесс горения необратим.

Гибридные двигатели очень редко применяются в мировой практике ракетного моделирования, но они нашли признание в России, так как все компоненты необходимо производить самостоятельно. Как мы видим на схеме ракеты Фастенкова, он состоит из трубы, двух заглушек, заправочного штуцера, дренажного клапана и сопла. Если в мастерской есть токарный и сверлильный станок, то такой двигатель можно создать за один день.

Группа Фастенкова самостоятельно сделала все элементы ракеты, кроме дюралевого корпуса и парашюта, который пришлось заказать в США.

Немного фактов.

Первый смешанный (гибридный) ракетный двигатель был сконструирован в СССР Сергеем Королевым в 1933 году. При первом пуске экспериментальной ракеты он смог поднять ее на высоту 400 метров, но в 1934 году высота полета составляла 1,5 км.

В наше время применение гибридных ракетных двигателей приостановлено, так как их заменили жидкие и твердотопливные ракетные двигатели. Но перспективы у гибридов имеются, так как твердое топливо упрощает конструкцию, а жидкое способствует регулировку силовой тяги. Также можно сказать, что твердое топливо играет несколько важных функций – изолирующую и охлаждающую.

Парафин в качестве топлива выбран не случайно, так как этот материал имеет низкую температуру плавления и для этого не требуется большая затрата энергии. Это позволяет уменьшить размеры камеры сгорания. По образованию тепла парафин приравнивается к жидкому керосину, который является официальным ракетным топливом. Оба компонента топлива для гибридного ракетного двигателя являются инертными, что исключает самовозгорание, что очень важно для любительского ракетного моделирования.

На сегодняшний день лидером по ракетному моделированию являются США. Их Национальная американская ассоциация ракетомоделистов (NAR) существует с 1956 года. Также эта организация издает свой журнал Sport Rocketry и организовывает около десятка фестивалей и соревнований в год, на которые съезжаются все американские «ракетостроители».

Недавно проходил большой фестиваль по ракетному моделированию в городе Сиэттле Narcon-2011, а в Калифорнии летом будет проходить следующий NSL-2011.

Но не стоит путать обычное ракетное моделирование с моделированием ракет большой мощности (High Power Rocketry).

Следует помнить, что ракеты повышенной мощности в США попадают под специальный кодекс 1127, простые маломощные модели ракет описаны в кодексе 1122. Вы наверное спросите, а какими техническими характеристиками должна обладать ракета повышенной мощности?

Все ракеты оснащенные двигателями класса Н и выше – суммарный импульс более 160 Нс или ракеты, имеющие несколько мощных двигателей – суммарный импульс более 320 Нс, относятся к категории ракет HPR. Также эти ракеты имеют тягу более 80 Н, а топливный бак емкостью более 62,5 граммов.

Прежде чем говорить о миниатюрных ракетах, уясним - что же такое модель ракеты, рассмотрим основные требования, предъявляемые к постройке и запуску моделей ракет.

Летающая модель ракеты приводится в движение с помощью ракетного двигателя и поднимается в воздух, не используя аэродинамическую подъёмную силу несущих поверхностей (как самолёт), имеет устройство для безопасного возвращения на землю. Модель изготовляют в основном из бумаги, дерева, разрушаемого пластика и других неметаллических материалов.

Разновидностью моделей ракет являются модели ракетопланов, которые обеспечивают возвращение на землю их планёрной части путём устойчивого планирования с использованием аэродинамических, замедляющих падение сил.

Различают 12 категорий моделей ракет - на высоту и продолжительность полёта, модели-копии и т.д. Из них - восемь чемпионатных (для официальных соревнований). У спортивных моделей ракет ограничивается стартовая масса - она должна быть не более 500 г, у копии - 1000 г, масса топлива в двигателях - не более 125 г и количество ступеней - не более трёх.

Стартовая масса - это масса модели с двигателями, с системой спасения и полезным грузом. Ступенью модели ракеты называется часть корпуса, содержащая в себе один или более ракетных двигателей, спроектированная с учётом её отделения в полёте. Часть модели без двигателя не является ступенью.

Ступенчатость конструкции определяют на момент первого движения от стартового двигателя. Для запуска модели ракет следует применять модельные двигатели (МРД) на твёрдом топливе только промышленного производства. Конструкция должна иметь поверхности или устройства, удерживающие модель на заранее намеченной траектории взлёта.

Нельзя, чтобы модель ракеты освобождалась от двигателя, если он не заключён в ступень. Разрешается сбрасывать корпус двигателя у модели ракетопланов, которые опускаются на парашюте (с куполом площадью не менее 0,04 кв. м) или на ленте размерами не менее 25x300 мм.

На всех ступенях модели и отделяющихся частях необходимо устройство, замедляющее спуск и обеспечивающее безопасность приземления: парашют, ротор, крыло и т.д. Парашют может изготовляться из любых материалов, а для удобства наблюдения иметь яркую окраску.

На модели ракеты, представляемой на соревнования, должны быть опознавательные знаки, состоящие из инициалов конструктора и двух цифр высотой не менее 10 мм. Исключение составляют модели-копии, опознавательные знаки которых соответствуют знакам копируемого прототипа.

Любая летающая модель ракеты (рис. 1) имеет следующие основные части: корпус, стабилизаторы, парашют, направляющие кольца, головной обтекатель и двигатель. Поясним их назначение. Корпус служит для размещения парашюта и двигателя. К нему крепят стабилизаторы и направляющие кольца.

Стабилизаторы нужны для устойчивости модели в полёте, а парашют или любая другая система спасения - для замедления свободного падения. С помощью направляющих колец модель устанавливают на штангу перед стартом. Для придания модели хорошей аэродинамической формы верхняя часть корпуса начинается головным обтекателем (рис. 2).

Двигатель - «сердце» модели ракеты, он создает необходимую тягу для полёта. Для тех, кто желает приобщиться к ракетомоделизму, своими руками изготовить действующую модель летательного аппарата под названием ракета, предлагаем несколько образцов таких изделий.

Надо сказать, что для данной работы понадобятся доступный материал и минимум инструментов. И, конечно, это будет самая простая, одноступенчатая модель под двигатель импульсом 2,5 - 5 н.с.

Исходя из того, что по спортивному кодексу ФАИ и нашим «Правилам проведения соревнований» минимальный диаметр корпуса составляет 40 мм, выбираем соответствующую оправку для корпуса. Для неё подойдет обыкновенный круглый стержень или трубка длиной 400 - 450 мм.

Это могут быть составные элементы (трубки) шланга от пылесоса или отслужившие свой век лампы дневного света. Но в последнем случае нужны особые меры предосторожности - ведь лампы изготовлены из тонкого стекла. Рассмотрим технологию постройки простейших моделей ракет.

Основной материал для изготовления несложных моделей, рекомендуемых начинающим конструкторам, - бумага и пенопласт. Корпуса и направляющие кольца склеивают из чертёжной бумаги, парашют или тормозную ленту вырезают из длинноволокнистой или цветной (креповой) бумаги.

Стабилизаторы, головной обтекатель, обойму под МРД делают из пенопласта. Для склейки желательно применять клей ПВА. Изготовление модели следует начать с корпуса. Для первых моделей лучше делать его цилиндрическим.

Условимся строить модель под двигатель МРД 5-3-3 с наружным диаметром 13 мм (рис. 3). В этом случае для его крепления в кормовой части придется вытачивать обойму длиной 10 - 20 мм. Важными геометрическими параметрами корпуса модели являются диаметр (d) и удлинение (X), которое представляет собой отношение длины корпуса (I) к его диаметру (d): X = I/d.

Удлинение большинства моделей для устойчивого полёта с хвостовым оперением должно быть около 9 - 10 единиц. Исходя из этого, определим размер бумажной заготовки для корпуса. Если возьмём оправку диаметром 40 мм, то ширину заготовки вычислим по формуле длины окружности: В - ud. Полученный результат надо умножить на два, ведь корпус - из двух слоёв бумаги, и добавить 8 - 10 мм на припуск для шва.

Ширина заготовки получилась равной порядка 260 мм. Тем, кто ещё не знаком с геометрией, ребятам второго-третьего классов, можно рекомендовать другой простой способ. Взять оправку, обмотать её два раза ниткой или полоской бумаги, прибавить 8 - 10 мм и узнать, какой будет ширина заготовки для корпуса. Следует иметь в виду, что бумагу необходимо располагать волокнами вдоль оправки.

В этом случае она хорошо скручивается, без изломов. Длину заготовки вычислим по формуле: L = Trd или остановимся на размере 380 -400 мм. Теперь о склейке. Обмотав бумажку-заготовку вокруг оправки один раз, оставшуюся часть бумаги промазываем клеем, даём ему немножко подсохнуть и обматываем второй раз.

Загладив шов, помещаем оправку с корпусом у источника тепла, например, у батареи отопления, после просушки зачищаем шов мелкой наждачной бумагой. Аналогичным способом изготавливаем и направляющие кольца. Берём обычный круглый карандаш и наматываем на него полоску бумаги шириной 30 - 40 мм в четыре слоя.

Получаем трубочку, которую после высыхания разрезаем на кольца шириной 10 - 12 мм. Впоследствии клеим их к корпусу. Они являются направляющими кольцами для старта модели. Форма стабилизаторов может быть различна (рис. 4). Их главное предназначение - обеспечение устойчивости модели в полёте.

Предпочтение можно отдать той, при которой часть площади находится за срезом кормовой (нижней) части корпуса. Выбрав нужную форму стабилизаторов, делаем его шаблон из плотной бумаги. По шаблону вырезаем стабилизаторы из пластины пенопласта толщиной 4 - 5 мм (можно с успехом применять потолочный пенопласт). Наименьшее число стабилизаторов - 3.

Сложив стопкой, друг на друга в пакет, скалываем их двумя булавками и, зажав пальцами одной руки, обрабатываем по краям напильником или бруском с наклеенной наждачной бумагой. Потом закругляем или заостряем все стороны стабилизаторов (предварительно разобрав пакет), кроме той, которой они будут крепиться к корпусу.

Далее - клеим стабилизаторы на ПВА в донной части корпуса и покрываем боковые стороны клеем ПВА - он сглаживает поры пенопласта. Головной обтекатель вытачиваем из пенопласта (лучше марки ПС-4-40) на токарном станке. Если такой возможности нет, его можно вырезать также из куска пенопласта и обработать напильником или наждачной бумагой.

Аналогично изготавливаем обойму под МРД и вклеиваем его в донную часть корпуса. В качестве системы спасения модели, обеспечивающей её безопасное приземление, применяем парашют или тормозную ленту. Купол вырезаем из бумаги или тонкого шёлка.

Для первых стартов диаметр купола следует выбирать порядка 350 - 400 мм, - этим самым ограничить время полёта - ведь хочется сохранить свою первую модель на память. После крепления строп к куполу производим укладку парашюта (рис. 6). После изготовления всех деталей модели проводим её сборку.

Головной обтекатель соединяем резиновой нитью (амортизатором) с верхней частью корпуса модели ракет. Концы строп купола парашюта связываем в один жгут и крепим его к середине амортизатора. Далее красим модели в яркие контрастные цвета. Стартовая масса готовой модели с двигателем МРД 5-3-3 около 45 - 50 г.

Подобными моделями можно проводить первые соревнования на продолжительность полёта. Если место для запусков ограничено, рекомендуем выбрать в качестве системы спасения тормозную ленту размерами 100x10 мм. Старты получаются зрелищными и динамичными.

Ведь время полёта при этом будет порядка 30 с, да и доставка моделей гарантирована, что очень важно для самих «ракетчиков». Модель ракеты для показательных полётов (рис. 7) рассчитана на старт с более мощным двигателем с общим импульсом 20 н.с. Она может нести на своём борту и полезный груз - листовки, вымпелы.

Полёт такой модели сам по себе эффектный: старт напоминает пуск настоящей ракеты, а выброс листовок или разноцветных вымпелов добавляет зрелищности. Корпус клеим из плотной чертёжной бумаги в два слоя на оправке диаметром 50 -55 мм, длина его 740 мм.

Стабилизаторы (их четыре) вырезаем из пластины пенопласта толщиной 6 мм. После закругления трёх сторон (кроме самой длинной - 110-мм) их боковые поверхности покрываем двумя слоями клея ПВА. Затем на длинной их стороне, которую потом крепим к корпусу, делаем желобок круглым напильником - для плотного прилегания стабилизаторов к круглой поверхности.

Направляющую трубку выклеиваем известным нам способом на круглой оправке (карандаше), разрезаем на кольца шириной 8 - 10 мм и крепим на ПВА к корпусу. Головной обтекатель вытачиваем на токарном станке из пенопласта. Из него же делаем и обойму под МРД шириной 20 мм и вклеиваем его в донную часть корпуса.

Наружную поверхность головного обтекателя два-три раза обмазываем клеем ПВА - для удаления шероховатости. Соединяем с верхней частью корпуса резинкой-амортизатором, для которого годится обыкновенная бельевая резинка шириной 4 - 6 мм. Купол парашюта диаметром 600 - 800 мм вырезаем из тонкого шёлка, число строп - 12-16.

Свободные концы этих нитей соединяем узлом в один жгут и крепим к середине амортизатора. Внутрь корпуса на расстоянии 250 - 300 мм от нижнего среза бумаги вклеиваем решётку из плотной бумаги или реек, которая не позволяет парашюту и полезному грузу опускаться в момент взлёта в низ модели, нарушая этим её центровку. Наполнение полезного груза целиком зависит от фантазии конструктора модели. Стартовая масса модели - около 250 - 280 г.

ПУСКОВОЕ УСТРОЙСТВО МОДЕЛИ РАКЕТЫ

Для безопасного запуска и полёта модели необходимо надёжное стартовое оборудование. Оно состоит из пускового устройства, пульта дистанционного управления запуском, проводников для подачи электропитания и воспламенителя.

Пусковое устройство должно обеспечивать движение модели вверх до тех пор, пока не будет достигнута скорость, необходимая для безопасного полёта по намеченной траектории. Механические приспособления, встроенные в пусковую установку и помогающие при старте, применять запрещается Правилами соревнований по моделям ракет спортивного Кодекса.

Самое простое пусковое устройство - направляющая штанга (штырь) диаметром 5 - 7 мм, которая закрепляется в стартовой плите. Угол наклона штанги к горизонту не должен быть менее 60 градусов. Пусковое устройство задаёт модели ракеты определённое направление полёта и обеспечивает ей достаточную устойчивость в момент схода с направляющего штыря.

При этом следует учесть, что чем больше длина модели, тем больше должна быть и его длина. Правила предусматривают минимальное расстояние от верхней макушки модели до окончания штанги в один метр. Пульт управления запуском представляет собой обыкновенную коробку размерами 80x90x180 мм, изготовить её можно самостоятельно из фанеры толщиной 2,5 - 3 мм.

На верхней панели (её лучше сделать съёмной) устанавливают сигнальную лампочку, блокировочный ключ и кнопку пуска. На ней можно смонтировать вольтметр или амперметр. Электрическая схема пульта управления запуском изображена на рисунке 7. В качестве источника тока в пульте управления применяют аккумуляторы или другие элементы питания.

В нашем кружке многие годы используют для этой цели четыре сухих элемента типа КБС напряжением 4,5 V, соединив их параллельно в две батареи, которые, в свою очередь, соединяют между собой последовательно. Такого питания хватает для запуска модели ракет в течение всего спортивного сезона.

Это около 250 - 300 пусков. Для подачи электропитания от пульта управления к воспламенителю желательно применять медные многожильные провода диаметром не менее 0,5 мм с влагостойкой изоляцией. Для надёжного и быстрого соединения на концах проводов устанавливают штепсельные разъёмы. В местах соединения воспламенителя крепят «крокодилы».

Длина токоподводящих проводов должна быть свыше 5 м. Воспламенитель (электрозапал) двигателей моделей ракет - это спираль из 1 - 2 витков или отрезок проволоки диаметром 0,2 - 0,3 мм длиной 20 - 25 мм. Материалом для воспламенителя служит нихромовая проволока, обладающая большим сопротивлением. Электрозапал вставляют непосредственно в сопло МРД.

При подаче тока на спираль (электрозапал) выделяется большое количество тепла, так необходимого для воспламенения топлива двигателя. Иногда, для усиления начального теплового импульса, спираль покрывают пороховой мякотью, предварительно обмакнув её в нитролак.

При запуске моделей ракет необходимо строго соблюдать меры безопасности. Вот некоторые из них. Старт моделей производится только дистанционно, пульт управления запуском размещается на расстоянии не менее 5 м от модели.

Для предотвращения непроизвольного воспламенения МРД блокировочный ключ пульта управления должен находиться у ответственного за старт. Только с его разрешения по команде «Ключ на старт!» делается трёхсекундный предстартовый отсчёт в обратном порядке, оканчивающийся командой «Пуск!».

Рис. 1. Модель ракеты: 1 -головной обтекатель; 2 - амортизатор; 3 - корпус; 4 - нить подвески парашюта; 5 - парашют; 6 - направляющие кольца; 7-стабилизатор; 8 - МРД


Рис. 2. Формы корпусов моделей ракет

Рис. 3. Простейшая модель ракеты: 1 -головной обтекатель; 2 - петля крепления системы спасения; 3-корпус; 4-система спасения (тормозная лента); 5 - пыж; 6 - МРД; 7-обойма; 8 - стабилизатор; 9 - направляющие кольца


Рис. 4. Варианты хвостового оперения: при виде сверху (I) и сбоку (II)

Рис. 5. Приклейка строп: 1 - купол; 2-стропы; 3 - накладка (бумага или липкая лента) Купол

Рис. 6. Укладка парашюта

Рис. 7. Модель ракеты для показательных запусков: 1-головной обтекатель; 2 - петля подвески системы спасения; 3 - парашют; 4 - корпус; 5-стабилизатор; 6-обойма под ПРД; 7 - направляющее кольцо


Рис. 8. Электрическая система пульта управления запуском

Цель. Дать учащимся понятие о реактивном движении, ознакомить с устройством и назначением ракет, изготовить модели ракет.

Методические рекомендации. На изучение этой темы рекомендуется отвести 14 ч - 7 занятий. Одно из них следует посвятить теме "СССР - родина космонавтики". При этом желательно использовать плакаты, рисунки, репродукции на космическую тему. Большую помощь в проведении данного занятия могут оказать, например, такие книги: Леонов Л., Соколов А. Ждите нас, звезды. М., Молодая гвардия, 1967; Лебедев Л., Лукьянов Б., Романов А. Сыны голубой планеты. М., Политиздат, 1971; Колл. Салют на орбите. М., Прогресс, 1977; Шаталов В., Ребров М. Космос: рабочая площадка. М., Детская литература, 1978; Орбиты сотрудничества/Под ред. Б. Петрова и В. Верещетина. М., Машиностроение, 1983.

Теоретический материал об основах полета и простейшую методику расчета моделей ракет следует изложить в доступной форме.

В процессе практической работы каждый кружковец должен построить модель одноступенчатой ракеты под стандартный двигатель. Руководитель предлагает учащимся чертеж простой, уже летавшей модели. Некоторые кружковцы захотят изготовить такую же, другие внесут изменения. Можно посоветовать сделать эскиз будущей модели. Подготовленным кружковцам, затрачивающим на постройку этой модели меньше отведенного времени, можно предложить выполнить модель двухступенчатой ракеты. А модель-копию первой жидкостной ракеты "09" рекомендуем изготовить в пионерском лагере.

Так как модели ракет снабжены ракетными двигателями, руководитель должен обратить особое внимание кружковцев на соблюдение правил безопасности при работе с ними. Категорически запрещается изготовлять самодельные двигатели.

Ракета - это летательный аппарат тяжелее воздуха, полет которого основан на реактивном принципе.

Первые ракеты появились в Китае вскоре после изобретения пороха. Они служили для фейерверков. Много позднее ракету стали применять и в военных целях. Это были обыкновенные стрелы с прикрепленными к ним бумажными гильзами, заполненными дымным порохом. Стрелу запускали из лука, а порох поджигали шнуром. Сноп пламени, вылетавший из ракеты, пугал противника, а реактивная сила увеличивала дальность полета стрелы.

Появление в Европе первой ракеты "летающий огонь" относится к 1250 г. Научного объяснения причин полета ракет в то время не было. Только после того, как в 1687 г. Ньютоном был сформулирован третий закон механики, стал понятен принцип реактивного движения.

Первое упоминание о русских боевых ракетах относится к 1607-1621 гг. В 1680 г. было основано первое "ракетное заведение", занимавшееся производством ракет. Созданная им сигнальная ракета находилась на вооружении русской армии более 150 лет.

Большой вклад в развитие отечественной ракетной техники внес русский ученый-артиллерист генерал А. Д. Засядько (1779-1837). Благодаря его трудам были созданы и приняты на вооружение ракеты с дальностью полета до 3 км.

Русский ученый в области артиллерии, ракетной техники, приборостроения генерал К. И. Константинов (1817-1871) разработал основы баллистики ракет и внес много усовершенствований в конструкцию и технологию изготовления пороховых ракет.

Несмотря на успехи в области применения боевых ракет, в середине XIX в. ракета теряет свое значение. После изобретения нарезного оружия артиллерия стала обладать большей кучностью стрельбы.

В XIX в. авторы ряда проектов предлагали использовать ракету в качестве двигателя летательного аппарата. Наиболее близко подошел к идее использования ракетного двигателя для космического полета молодой революционер-народник, изобретатель Н. И. Кибальчич (1853-1881). Находясь в заключении за участие в покушении на царя, он в 1881 г. разработал "Проект воздухоплавательного прибора". Это был аппарат, работающий по принципу ракеты.

Впервые идея полета ракет в космос получила научное обоснование в классических трудах К. Э. Циолковского (1857-1935). Один из них - "Исследование мировых пространств реактивными приборами". В нем впервые в мире были высказаны многие идеи, которые до сих пор использует космонавтика.

В годы Советской власти большая работа в области ракетной техники велась под руководством советского ученого и изобретателя Ф. А. Цандера (1887-1933). В 1931 г. при Центральном совете Осоавиахима была организована группа изучения реактивного движения - ГИРД. В ее создании участвовал и С. П. Королев (1906-1966), ставший крупнейшим конструктором ракетно-космических систем. 17 августа 1933 г. совершила полет первая советская жидкостная ракета "09" конструкции Героя Социалистического Труда профессора М. К. Тихонравова (1900-1974). Двигатель ракеты работал на жидком кислороде и желеобразном бензине, развивая силу тяги в 0,5 кН.

В послевоенные годы в СССР были освоены различные ракеты и проведены обширные исследования космического пространства. А 4 октября 1957 г. запуском первого искусственного спутника Земли был начат штурм космоса.

12 апреля 1961 г. впервые в истории человечества гражданин СССР Юрий Алексеевич Гагарин проник в космическое пространство. Космический корабль "Восток" был выведен на орбиту мощной ракетой-носителем.

В последние два десятилетия освоение космоса получило широкий размах. Советскими конструкторами созданы для этой цели новые мощные ракеты.

Ракеты различают по следующим признакам: по наличию несущих плоскостей - крылатые и бескрылые; по способу управления - неуправляемые и управляемые; по принципу свободного полета - аэродинамические, баллистические, космические; по назначению - боевые, сигнальные, метеорологические,. геофизические и др.; по числу ступеней - одно- и многоступенчатые.

Ракета обычно состоит из корпуса, оперения, органов управления, двигателя, топливной системы и оборудования. Подъемная сила ракеты создается силой тяги ракетного двигателя (только у крылатых ракет подъемная сила создается при полете в атмосфере несущими поверхностями - крыльями).

В зависимости от употребляемого топлива различают ракетные двигатели жидкостные (ЖРД), в которых компоненты топлива до поступления в камеру сгорания находятся в жидком состоянии, и на твердом топливе (РДТТ), в которых компоненты топлива до начала химической реакции находятся в твердом состоянии. У ЖРД и РДТТ энергия топлива последовательно преобразуется сначала во внутреннюю, а затем в механическую энергию газообразных продуктов сгорания, вытекающих из сопла двигателя. Принцип работы двигателей ЖРД и РДТТ одинаков.

Рассмотрим, как создается сила тяги ракетного двигателя. Если поместить в закрытый со всех сторон сосуд некоторое количество пороха и поджечь его (рис. 27, а), то при сгорании пороха образуется газ, который стремится расшириться и занять больший объем, чем занимал до воспламенения порох. Если же в стенке сосуда сделать отверстие (рис. 27, б), через него с большой скоростью начнут выходить пороховые газы; сила, действующая на эту стенку, уменьшится, так как ее площадь стала меньше площади противоположной стенки: появится разность сил, которая и представляет собой силу тяги.

Сила тяги ракетного двигателя возникает вследствие выбрасывания из него массы газообразных продуктов сгорания, т. е. является реактивной силой F р. Действие ее можно сравнить с действием силы отдачи при стрельбе из винтовки.

Величина реактивной силы, зависит не только от количества, но и от скорости выбрасываемой массы газов.

В ракетном моделизме используют только двигатели твердого топлива. Самый простой и наиболее доступный - пороховой ракетный двигатель. В СССР разработано 17 типов модельных ракетных двигателей (МРД) с импульсом от 2,5 до 20 Н×с (табл. 2).

Модельные ракетные двигатели предназначены для создания движущей силы и раскрытия системы спасения моделей ракет.

МРД состоит из прочного бумажного корпуса, в который запрессованы сопло, заряд твердого топлива, замедлитель и вышибной заряд (рис. 28). Тяга МРД создается в результате истечения через сопло продуктов сгорания топлива; после загорания замедлителя образуется дымовой след для удобства наблюдения за полетом модели. После сгорания замедлителя воспламеняется вышибной заряд, что приводит к срабатыванию системы спасения модели.

Запуск МРД должен быть дистанционным, с расстояния не менее 10 м от стартового устройства. Для воспламенения МРД лучше всего применять воспламенители из нихромовой проволоки диаметром 0,2-0,3 мм, на которую нанесен пиротехнический состав. При накаливании проволоки электрическим током пиротехнический состав воспламеняется и зажигает заряд твердого топлива двигателя.

По маркировке на корпусе можно узнать о характеристике МРД, например МРД 20-10-4: 20 - суммарный импульс тяги, Н×с; 10 - средняя тяга, Н; 4 - время горения замедлителя, с; МРД 2,5-3-0: 2,5 - суммарный импульс тяги, Н×c; 3 - средняя тяга, Н; 0 - замедлителя нет. Во избежание отстрела двигателя в момент срабатывания вышибного заряда его следует надежно закреплять в модели (для этого можно использовать фиксатор, плотную посадку с клеем "Аго").

Перед установкой МРД в модель необходимо провести визуальный осмотр двигателя. Иногда на наружной части вдоль корпуса видны три небольшие складочки от матрицы при запрессовке топлива - зиги. Если зиги имеют ширину 1-1,5 мм, двигатель для ответственных стартов лучше не применять, так как по зигам может произойти разрыв корпуса. Могут быть и поперечные складки на корпусе, в основном в районе сопла. Такой двигатель тоже лучше отложить для тренировочных запусков. Кроме того, нужно проверить наличие вышибного заряда: сверху острым предметом (тонким пинцетом, иголкой) поднять бумажный пыж и, убедившись в наличии пороха, установить его на прежнее место.

Меры предосторожности при запуске. Для запуска МРД следует применять только воспламенитель, причем, вставляя в канал сопла, его надо закреплять, но ни в коем случае не забивать в сопло. В противном случае взрыв двигателя неизбежен.

Запуск МРД производят только вместе с моделью или на стенде; в случае отказа зажигания подходить к модели (МРД) можно не ранее чем через 1 мин.

Модели ракет запускают только с пускового устройства, оснащенного направляющим штырем (стержнем) или другими направляющими длиной не менее 1 м; допустимое отклонение стержня от вертикали не более 30°. Для предотвращения травм глаз верхний конец стержня должен находиться не ниже 1,5 м от земли.

Площадка для запуска моделей ракет в радиусе 1 м от пускового устройства должна быть очищена от сухой травы и других легковоспламеняющихся материалов.

Одно из условий полета модели ракеты по заданной траектории - ее устойчивость, т. е. способность возвращаться в положение равновесия, нарушенное внешней силой, после прекращения действия последней.

Аэродинамическая устойчивость зависит от взаимного расположения центра тяжести (ЦТ) и центра давления (ЦД). Центр давления - точка приложения всех аэродинамических сил. Если ЦТ расположен позади ЦД, аэродинамические силы создают момент, увеличивающий угол атаки. Такая модель будет неустойчивой в полете. Если ЦТ расположен впереди ЦД, при изменении угла атаки аэродинамические силы создают момент, который возвращает модель ракеты к нулевому углу атаки. Такая модель будет устойчивой. Чем дальше смещен ЦД относительно ЦТ, тем устойчивее ракета.

Отношение расстояния от ЦД до ЦТ к длине ракеты называется запасом устойчивости. Для ракет со стабилизаторами он составляет 5-15%.

Поскольку формулы для определения ЦТ сложны, можно предложить приближенный практический способ его нахождения. Из листового материала (картона, фанеры, целлулоида) вырезают фигуру по контуру модели ракеты и находят ее ЦТ. Это и будет искомый ЦД модели.

В полете по мере выгорания топлива положение ЦТ может меняться, но в любом случае ЦТ должен оставаться впереди ЦД. Если топливо (двигатель) размещается в хвостовой части модели, то при выгорании его ЦТ будет смещаться к носовой части ракеты и ее устойчивость увеличивается. Крайние положения ЦТ определяют балансировкой модели, готовой к старту, и модели после выгорания топлива.

Устойчивость модели можно обеспечить: утяжелением ее носовой части; смещением ЦД к хвостовой части, увеличивая площадь или изменяя расположение стабилизаторов.

Для стабилизаторов используют тонкие симметричные профили. Применение тонкой пластины упрощает изготовление модели, практически не влияя на ее аэродинамические качества.

Корпус модели ракеты представляет собой тело вращения. Рас ширяющийся конус хвостовой части (наилучшая форма) обеспечивает наибольшую устойчивость модели. При выборе длины корпуса удлинение λ следует брать в пределах 10-25: λ = l к /d, где l к - длина корпуса; d - диаметр корпуса.

Наиболее распространенный материал для корпусов моделей ракет - бумага (например, рисовальная, полуватман, ватман). Склеивают бумажные корпуса на оправках столярным или казеиновым клеем. Бумага может быть в 2-3 слоя - в зависимости от ее толщины. Диаметр МРД различен. Если строить; мидель с двигателем диаметром 20 мм, диаметр корпуса должен быть больше этого размера. При λ = 20 длину корпуса получаем равной 400 мм. Это и будет длиной бумажной заготовки для корпуса. А ширину заготовки можно определить по формуле длины окружности С = nd, где d - диаметр оправки. Если корпус делают из двух слоев бумаги, то ширина заготовки будет lo = 2C = 2nd; если из трех, то l0 = 3πd. К полученному размеру следует прибавить 10-15 мм на припуск для шва. Можно определить ширину заготовки для корпуса, обмотав два раза оправку полоской бумаги и прибавив 10-15 мм на шов.

Заготовку располагают так, чтобы ее длина была направлена вдоль волокон бумаги.

Особо прочные корпуса изготавливают из стеклопластика.

Основной материал для стабилизаторов - авиационная фанера толщиной 1-2 мм; применяют также липу и бальзу.

Парашют для одноступенчатой модели выполняют из бумаги, шелка, капрона, металлизированной пленки.

Наиболее трудно изготовить корпус. Поэтому вначале лучше научить ребят клеить трубочки для направляющих колец. Оправкой может служить круглый карандаш. Просушенные трубочки разрезают ножом на кольца шириной 5-8 мм.

Модель одноступенчатой ракеты (рис. 29). Корпус состоит из двух слоев чертежной бумаги; склеен столярным клеем на оправке диаметром 19 мм. Направляющие кольца - из четырех слоев чертежной бумаги, оправкой для их склеивания может служить карандаш диаметром 6 мм.

Три стабилизатора изготовлены, из фанеры толщиной 1 мм и присоединены встык к нижней части корпуса нитроклеем.

Головной обтекатель выточен на токарном станке из березовой древесины. Крепят его к верхней части корпуса с помощью резинового амортизатора.

Купол парашюта диаметром 500 мм изготавливают из микалентной бумаги; 18 стропов из ниток № 10 крепят к головному обтекателю.

Собранную модель покрывают нитролаком (эмалитом) и окрашивают в черный и желтый цвета (полосами). Масса модели без двигателя 25 г.

Модель ракеты "РВ-100" (рис. 30). Сконструирована для соревнований "спуск на ленте" и на высоту полета. Для ее запуска применяют двигатель МРД 2,5-3-3.

Рис. 30. Модель ракеты с лентой "РВ-100": 1 - головной обтекатель; 2 - нить подвески; 3 - лента; 4 - корпус; 5 - стабилизатор; 6 - резинка-амортизатор: 7 - направляющее кольцо

Корпус длиной 190 мм формуют из стеклопластика на двух оправках: переменного сечения и диаметром 18 и 13 мм. Три стабилизатора вырезают из липовой пластины и встык приклеивают к корпусу эпоксидным клеем. Направляющие кольца диаметром 4 мм и длиной 3 мм - из стеклопластика. Резинку-амортизатор крепят к корпусу снаружи в районе центра тяжести модели (ЦТ определяют для модели с двигателем). Тормозная лента - из лавсановой пленки толщиной 0,4 мм.

Масса модели без двигателя 8 г.

Модель-копия ракеты "09" (рис. 31). 17 августа 1933 г. под Москвой в Нахабино была запущена первая советская ракета "09" конструкции М. К. Тихонравова. Модель-копия знаменитой гирдовской ракеты "09" (ГИРД - группа изучения реактивного движения) разработана (в масштабе 1:4) на станции юных техников г. Электростали.


Рис. 31. Модель-копия ракеты "09": 1 - головной обтекатель; 2 - приборный отсек; 3 - боковой обтекатель; 4 - стекло манометра; 5 - ребра жесткости; 6 - корпус; 7 - стабилизатор; 8 - хвостовой обтекатель, 9 - МРД 20-10-4; 10 - шпангоут; 11 - обтекатель стабилизатора; 12 - упорный шпангоут; 13 - свеча зажигания; 14 - направляющие кольца

Прежде всего надо изготовить оправку для выклейки корпуса. Ее можно выточить из дюралюминия, причем внешние диаметры необходимо сделать на 1 мм меньше соответствующих размеров модели.

Корпус клеят из двух слоев чертежной бумаги; цилиндрическую и коническую части выклеивают отдельно. Оболочки торцуют острозаточенным ножом, зажав их вместе с оправкой в патрон токарного станка. Затем элементы корпуса снимают с болванки и склеивают.

Боковые обтекатели штампуют из тонкого целлулоида. К цилиндрической части корпуса их прикрепляют нитроклеем. Там же прорезают отверстие и закрывают изнутри целлулоидным диском - это имитация остекления манометра.

В нижней части корпуса вклеивают два шпангоута, выточенных из липы; верхний шпангоут - упорный.

Стабилизаторы вырезают из липы. Для прочности их поверхности оклеивают стеклотканью. Стабилизаторы крепят к корпусу эпоксидным клеем, места стыков усиливают бальзовыми (липовыми) обтекателями.

Вдоль корпуса сверху вниз проходят восемь ребер жесткости, их можно выстругать из липовых реек длиной 310 мм. Направляющие кольца - из жестяных полосок шириной 2 мм. Их крепят к корпусу эпоксидным клеем.

Головной обтекатель вытачивают из липы. Для облегчения детали внутри протачивают полость.

Съемный хвостовой обтекатель формуют из стеклопластика. После установки ракетного двигателя его прикрепляют к шпангоуту корпуса четырьмя винтами М2.

Парашют вырезают из микалентной бумаги; диаметр его купола 750 мм.

После сборки модель сначала покрывают двумя слоями клея АК-20, а затем шпаклюют и обрабатывают шкуркой. Окончательная отделка - покраска в серебристый цвет ("серебрянкой"); надписи "СССР" и "09" - черные, звезда - красная. После окончательной отделки масса модели должна быть в пределах 120 г. На модель устанавливают двигатель МРД 20-10-4.

Запуск моделей. Для безопасного запуска моделей ракет необходимо стартовое оборудование, состоящее из пускового устройства, пульта управления и проводников для подачи электропитания к нити накаливания.

Пусковое устройство должно ограничивать движение модели по горизонтали до тех пор, пока не будет достигнута скорость, надежно обеспечивающая безопасный полет по намеченной траектории. Применять встроенные в пусковую установку механические устройства, помогающие при запуске, запрещается.

Простейшее пусковое устройство - направляющий штырь диаметром 5-6 мм, длиной 1,4-1,5 м, ввинчиваемый в стартовую плиту. Угол наклона штыря к горизонту должен быть более 60°. Пусковое устройство придает модели определенное направление полета и обеспечивает хорошую скорость в момент схода модели с направляющего штыря.

Запуск или воспламенение топлива должны осуществляться при помощи дистанционного электрического пульта управления, расположенного на расстоянии не менее 10 м от модели. Пулы управления - это коробка, в которой размещены электрические батареи или аккумуляторы. На одной из крышек должны быть установлены сигнальная лампа, блокировочный ключ и кнопка запуска.

Для подачи питания лучше использовать медный изолированный провод диаметром не менее 0,2-0,3 мм. Спираль накаливания изготавливают из нихромовой проволоки диаметром 0,3-0,4 мм; число витков спирали зависит от типа батарей питания.

Проведение соревнований. С моделями одноступенчатых ракет можно проводить соревнования на высоту и время полета. Наиболее простой и доступный вид состязаний в школьных кружках и пионерских лагерях - соревнование на время полета ("парашютирование"); его цель - добиться наибольшей продолжительности полета модели ракеты.

Очень интересны для зрителей соревнования "спуск на ленте". По правилам соревнований, принятым в СССР, минимальное отношение длины ленты к ее ширине 10: 1. Весь полет происходит на виду у участников и зрителей. Победителя можно определять по одному запуску, а также по сумме результатов в нескольких турах. Соревнования "спуск на парашюте" проводят в 5 туров с ограничением времени фиксации. Победителем считается участник, набравший наибольшее число очков (1 с соответствует 1 очку). Время фиксируется от начала движения модели ракеты на пусковой установке до момента касания ею земли или того момента, когда модель скроется из вида. Если во время полета обрывается головной обтекатель или корпус, полет не засчитывают. Полет считается невыполненным и оценивается в ноль очков, если у модели не раскрылся парашют.

Для проведения соревнований желательно выбрать площадку вдали от жилых помещений, линий электропередач и деревьев.

Ключ на старт!

Внимание, пуск!

Модель слегка приподнялась на направляющих, затем, набирая скорость, быстро исчезли в синеве неба. А на пусковое устройство уже устанавливали следующую ракету. «Байконур» для моделей работал с полной нагрузкой.

Простейшее пусковое устройство - направляющий штырь Ø 5-7 мм, закрепленный на стартовой плите (рис. 1) с углом наклона к горизонту не менее 60°.

Направляющие задают модели определенный курс и обеспечивают устойчивость в начальный момент полета. Чем больше высота ракеты, тем длиннее должен быть штырь. Обычные его размеры 1,4-1,6 м.

Пуск осуществляемся с помощью электрозапала. Восемь сухих элементов типа 343 соедините между собой по четыре последовательно, а получившиеся две батареи - параллельно. Можно использовать также круглые элементы типа 373 «Марс» (8 шт.). Электрическая

схема пульта управления запуском показана на рисунке 2. Источники питания разместите в коробке. На одной из панелей (лучше на верхней) установите сигнальную лампочку, блокировочный ключ к кнопку запуска. Неплохо, если на стартовом устройстве будет амперметр и вольтметр.

Провода от пульта к воспламенителю лучше использовать медные, многожильные, в полихлорвиниловой изоляции, диаметром не менее 0,5 мм. Для надежного и быстрого соединения на концах кабеля установив штепсельные разъемы. Длина проводов должна быть более 10 м.

Воспламенитель двигателей моделей ракет электрический (рис. 3). Эта спираль из 5-6 витков нихромовой проводки Ø 0,2-0,3 мм. При включении электропитания она раскаляется и поджигает топливо. Для усиления теплового импульса спираль покрывается пороховой мякотью, растворенной в нитроклее, или рядом с ней закрепляется кусочек стопина.

1- направляющий штырь, 2 - модель ракеты, 3 - стартовая плита, 4 - отражатель, 5 - электрозапал.

Поскольку стопин применяется для передачи теплового импульса от одной ступени к другой, остановимся на способах его изготовления. Это хлопчато-бумажная нить, покрытая пороховой мякотью, с добавлением клея. Из нитей делают жгут Ø 1-2 мм, пропитывают раствором калиевой селитры (35 - 40 г на стакан воды) и погружают после просушки в жидкую пороховую мякоть (селитра калиевая - 75, сера - 12, уголь древесный - 13 частей по весу). Чтобы она после сушки не осыпалась, добавьте в раствор немного клея. Готовый жгут разрезается на отрезки нужной длины.

А как быть, если надо одновременно поджечь несколько двигателей? Например, модель-копии ракеты-носителя космических кораблей «Восток» и «Союз» имеют четыре боковых блока. Для большего подобия старта желательно, чтобы они были снабжены работающими двигателями. В таких случаях рекомендуем использовать следующие конструкции.

Самый пуостой (но не самый надежный) - зажигание «связкой». Например, надо воспламенить три двигателя. Возьмите три кусочка стопина длиной 80 - 100 мм, вставьте в сопла, а другие, свободные, соедините вместе и прикрепите к спирали. Стопин надо подбирать одинакового сечения и плотности. Иначе скорость горения будет различной и двигатели одновременно не сработают.

Другой способ - применение электрозапалов по числу двигателей, соединенных параллельно. Спирали подбегите с одинаковым сопротивлением. Источник тока должен обеспечиват в 4-5 раз больший разводный ток, чем для зажигания одного двигателя.

Главное достоинство зажигания двигателей пиротехническим крестом - «пауком» (рис. 4) - надежность. Оригинальную конструкцию этого приспособления для старта предложил спортсмен-ракетомоделист С. Апарнев. Корпус «паука» выточен из стали и имеет форму стакана дном вверх. В нижней его части нарезана внутренняя резьба М24×3 на глубину 23 мм; в верхнюю в просверленные отверстия впаиваются огне доводящие медные трубки длиной 140 - 150 мм Ø 5 мм с толщиной стенки 0,4 - 0,5 мм. Количество трубок зависит от числа воспламеняемых двигателей.

Сбоку в корпусе «паука» имеется кронштейн для установки «паука» на направляющий штырь. В противоположной стенке - резьба М6Х1 для запальника. В его эбонитовом корпусе просверлены два отверстия Ø1 мм для выводов нихромовой нити накаливания длиной 25-30 мм.

Заглушка корпуса стальная с наружной резьбой М24Х3. Верхняя (торцевая] поверхность имеет форму конуса. При подготовке к старту «паук» располагают трубками вниз, вывинчивают заглушку, на дне корпуса укладывают шайбу из папиросной бумаги и ввинчивают запальник. В него засылают черный порох (в объеме гильзы от малокалиберной винтовки) заворачивают заглушку, крепят «паук» на направляющем штыре и устанавливают модель на стартовом устройстве.

Если подать напряжение на нить накаливания, то порох вспыхнет, тепловой импульс по трубкам передастся двигателям. Топливо воспламенится. Мгновение - и модель устремляется в небо.

При запуске моделей ракет необходимо строго соблюдать меры безопасности. Остановимся на некоторых из них.

1 - корпус (сталь), 2 - заглушка (сталь), 3 - корпус запальника (эбонит), 4 - нить накаливания (нихром), 5 - контакты, 6 - огнепроводящие трубки (медь, латунь), 7 - отверстие для направляющего штыря.

Старт моделей осуществляется с помощью дистанционного устройства, находящегося на расстоянии не менее 10 м от модели. Для предотвращения непроизвольного воспламенения двигателей блокировочный ключ пульта управления запуском должен находиться у ответственного за старт. Спортсмен, запускающий модель, обязан полностью контролировать процесс старта. По «Правилам соревнований по ракетомодельному спорту» модели ракет можно запускать при скорости ветра не более 35 км/ч и прямой видимости не менее 500 м.

Пуски моделей совершаются со стартовой площадки, разбитой на зоны. Длина и ширина зоны - 25-30 м. Стартовая площадка для запуска моделей на высоту полета может быть и в виде круглой площадки Ø 35-40 м.

Для подготовки пусковой установки к пуску в стартовую зону разрешается выходить участнику и одному его помощнику. Время выхода на старт - 1 мин.

Запуск осуществляется только с разрешения начальника старта по команде «Ключ на старт». После чего судья старта делает предстартовый пятисекундный отсчет, оканчивающийся командой «Пуск».

Если не произошло воспламенения двигателей (двигателя) модели ракеты и она не сошла с направляющего штыря, то по истечении одной минуты спортсмен с разрешения начальника старта может подойти к пусковой установке для проверки системы зажигания. Время его пребывания в стартовой зоне не более 1 мин. При вторичном отказе стартового оборудования спортсмен получает ноль очков в данном туре соревнований.

В. РОЖКОВ, мастер спорта СССР

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Мало кто из моих ровесников не увлекался постройкой моделей ракет. Может, сказывалось всемирное увлечение человечества пилотируемыми полетами, а может, кажущаяся простота постройки модели. Картонная трубка с тремя стабилизаторами и головным обтекателем из пенопласта или бальсы, согласитесь, намного проще даже элементарной модели самолета или автомобиля. Правда, энтузиазм большинства молодых Королевых, как правило, улетучивался на этапе поиска ракетного двигателя. Оставшимся ничего не оставалось, как осваивать азы пиротехники.

Александр Грек

Между Главным конструктором наших ракет Сергеем Королевым и Главным конструктором наших ракетных двигателей Валентином Глушко шла негласная борьба за звание Самого Главного: кто же действительно важнее, конструктор ракет или двигателей для них? Глушко приписывают крылатую фразу, якобы брошенную им в разгар такого спора: «Да я к своему двигателю забор привяжу — он на орбиту выйдет!» Впрочем, эти слова — отнюдь не пустое бахвальство. Отказ от «глушковских» двигателей привел к краху королевской лунной ракеты H-1 и лишил СССР каких-либо шансов на победу в лунной гонке. Глушко же, став генеральным конструктором, создал сверхмощную ракету-носитель «Энергия», превзойти которую до сих пор никому не удается.


Двигатели из патронов

Та же закономерность работала и в любительском ракетостроении — выше летала ракета, у которой был более мощный двигатель. Несмотря на то что первые ракетомодельные двигатели появились в СССР еще до войны, в 1938 году, Евгений Букш, автор вышедшей в 1972 году книги «Основы ракетного моделизма», взял за основу такого двигателя картонную гильзу охотничьего патрона. Мощность определялась калибром исходной гильзы, а производились двигатели двумя пиротехническими мастерскими ДОСААФ вплоть до 1974 года, когда было принято решение об организации в стране ракетомодельного спорта. Для участия в международных соревнованиях потребовались двигатели, подходящие по своим параметрам под требования международной федерации.

Их разработка была поручена Пермскому НИИ полимерных материалов. Вскоре была выпущена опытная партия, на основе которой и начал развиваться советский ракетомодельный спорт. С 1982 года с перебоями заработало серийное производство двигателей на государственном казенном заводе «Импульс» в украинской Шостке — в год выпускали 200−250 тысяч экземпляров. Несмотря на жесткий дефицит таких двигателей, это был период расцвета советского любительского модельного ракетостроения, который закончился в 1990 году одновременно с закрытием производства в Шостке.

Двигательный тюнинг

Качество серийных двигателей, как нетрудно догадаться, для серьезных соревнований не годилось. Поэтому рядом с заводом в 1984 году появилось мелкосерийное опытное производство, обеспечивавшее своей продукцией сборную страны. Особенно выделялись двигатели, частным образом изготовленные мастером Юрием Гапоном.


А в чем, собственно, сложность производства? По своей сути ракетомодельный двигатель — простейшее устройство: картонная трубка с запрессованным внутри дымным порохом марки ДРП-3П (дымный ружейный порох 3-й состав для прессованных изделий) с керамической заглушкой с соплом-дыркой с одной стороны и пыжом с вышибным зарядом — с другой. Первая проблема, с которой не справлялось серийное производство, — точность дозировки, от которой зависел и конечный суммарный импульс двигателя. Вторая — качество корпусов, которые часто давали трещины при прессовании под давлением в три тонны. Ну и третья — собственно, качество запрессовки. Впрочем, проблемы с качеством возникали не только в нашей стране. Не блещут им и серийные ракетомодельные двигатели другой великой космической державы — США. А лучшие модельные двигатели делают микроскопические предприятия в Чехии и Словакии, откуда их контрабандой провозят для особо важных мероприятий.

Тем не менее при социализме двигатели, пусть неважные и с дефицитом, но были. Сейчас же их нет вообще. Отдельные детские ракетомодельные студии летают на старых, еще советских запасах, закрывая глаза на то, что срок годности давно вышел. Спортсмены пользуются услугами пары мастеров-одиночек, а если повезет, то и контрабандными чешскими двигателями. Любителям же остается единственный путь — перед тем как стать Королевым, сначала стать Глушко. То есть делать двигатели самим. Чем, собственно, и занимались я и мои друзья в детстве. Слава богу, пальцы и глаза у всех остались на месте.

Из всех искусств

Из всех искусств для нас важнейшим является кино, любил поговаривать Ильич. Для ракетомоделистов-любителей середины прошлого века — тоже. Ибо кино- и фотопленка того времени делалась из целлулоида. Туго свернутая в небольшой рулончик и засунутая в бумажную трубку со стабилизаторами, она позволяла взлететь простейшей ракете на высоту пятиэтажного дома. У таких двигателей было два главных недостатка: первый — небольшая мощность и, как следствие, высота полета; второй — невозобновимость запасов целлулоидной пленки. Например, фотоархива моего отца хватило всего на пару десятков запусков. Сейчас, кстати, жалко.


Максимальная высота при фиксированном суммарном импульсе двигателя достигалась при кратковременном четырехкратном скачке мощности на старте и дальнейшем переходе на ровную среднюю тягу. Скачок тяги достигался формированием отверстия в топливном заряде.

Второй вариант двигателей собирался, так сказать, из отходов деятельности Советской армии. Дело в том, что при стрельбах на артиллерийских полигонах (а один из них как раз находился неподалеку от нас) метательный заряд при выстреле выгорает не до конца. И если хорошенько поискать в траве перед позициями, можно было найти довольно много трубчатого пороха. Самая несложная ракета получалась в результате простого заворачивания такой трубки в обычную фольгу от шоколадки и поджигания с одного конца. Летала такая ракета, правда, невысоко и непредсказуемо, зато весело. Мощный двигатель получался при собирании длинных трубок в пакет и заталкивании их в картонный корпус. Из обожженной глины изготавливалось и примитивное сопло. Работал такой двигатель очень эффектно, поднимал ракету довольно высоко, но часто взрывался. К тому же на артиллерийский полигон не особо походишь.


Третий вариант представлял собой попытку почти промышленного изготовления ракетомодельного двигателя на самодельном дымном порохе. Делали его из калиевой селитры, серы и активированного угля (он постоянно заклинивал родительскую кофемолку, на которой я его измельчал в пыль). Признаюсь честно, мои пороховые двигатели работали с перебоями, поднимая ракеты всего на пару десятков метров. Причину я узнал лишь пару дней назад — запрессовывать двигатели нужно было не молотком в квартире, а школьным прессом в лаборатории. Но кто бы, спрашивается, меня в седьмом классе пустил запрессовывать ракетные двигатели?!


Два редчайших двигателя, которые удалось достать «ПМ»: МРД 2, 5−3-6 и МРД 20−10−4. Из советских запасов ракетомодельной секции в Детском доме творчества на Воробьевых горах.

Работа с ядами

Вершиной же моей двигателестроительной деятельности стал довольно ядовитый двигатель, работавший на смеси цинковой пыли и серы. Оба ингредиента я выменял у одноклассника, сына директора городской аптеки, на пару резиновых индейцев, самую конвертируемую валюту моего детства. Рецепт я почерпнул в жутко редкой переводной польской ракетомодельной книжке. И двигатели набивал в папином противогазе, который хранился у нас в кладовке, — в книжке особый упор делался на токсичность цинковой пыли. Первый пробный запуск был проведен в отсутствие родителей на кухне. Столб пламени из зажатого в тисках двигателя с ревом устремился к потолку, прокоптив на нем пятно диаметром в метр и наполнив квартиру таким вонючим дымом, с каким не сравнится и коробка выкуренных сигар. Вот эти-то двигатели и обеспечили мне рекордные запуски — метров, наверное, на пятьдесят. Каково же было мое разочарование, когда через двадцать лет я узнал, что детские ракеты нашего научного редактора Дмитрия Мамонтова летали в разы выше!


1, 2, 4) При наличии заводского ракетного двигателя с постройкой простейшей ракеты справится и школьник начальных классов. 3) Продукт самодеятельного творчества — двигатель из патронной гильзы.

На удобрениях

Двигатель Дмитрия был проще и технологичнее. Основной компонент его ракетного топлива — это натриевая селитра, которая продавалась в хозяйственных магазинах как удобрение в мешках по 3 и 5 кг. Селитра служила окислителем. А в качестве горючего выступала обычная газета, которая и пропитывалась перенасыщенным (горячим) раствором селитры, а затем высушивалась. Правда, селитра в процессе сушки начинала кристаллизоваться на поверхности бумаги, что приводило к замедлению горения (и даже гашению). Но тут вступало в действие ноу-хау — Дмитрий проглаживал газету горячим утюгом, буквально вплавляя селитру в бумагу. Это стоило ему испорченного утюга, но зато такая бумага горела очень быстро и стабильно, выделяя большое количество горячих газов. Набитые свернутой в тугой рулон селитрованной бумагой картонные трубки с импровизированными соплами из бутылочных пробок взлетали на сотню-другую метров.

Карамель

Параноидальный запрет российских властей на продажу населению разных химреактивов, из которых можно изготовить взрывчатку (а ее можно изготовить практически из всего, хоть из древесных опилок), компенсируется доступностью через интернет рецептов практически всех видов ракетного топлива, включая, например, состав горючего для ускорителей «Шаттла» (69,9% перхлората аммония, 12,04% полиуретана, 16% алюминиевой пудры, 0,07% оксида железа и 1,96% отвердителя).


Картонные или пенопластовые корпуса ракет, топливо на основе пороха кажутся не очень серьезными достижениями. Но как знать — может, это первые шаги будущего конструктора межпланетных кораблей?

Безусловным хитом любительского ракетного двигателестроения сейчас являются так называемые карамельные двигатели. Рецепт топлива прост до неприличия: 65% калиевой селитры KNO3 и 35% сахара. Селитра подсушивается на сковородке, после чего измельчается в обычной кофемолке, медленно добавляется в расплавленный сахар и застывает. Итогом творчества становятся топливные шашки, из которых можно набирать любые двигатели. В качестве корпусов двигателей и форм прекрасно подходят стреляные гильзы от охотничьих патронов — привет тридцатым! Гильзы в неограниченном количестве есть на любом стрелковом стенде. Хотя признанные мастера рекомендуют использовать не сахарную, а сорбитовую карамель в тех же пропорциях: сахарная развивает большее давление и, как следствие, раздувает и прожигает гильзы.


Назад в будущее

Ситуация, можно сказать, вернулась в 1930-е годы. В отличие от других видов модельного спорта, где недостаток отечественных двигателей и прочих комплектующих можно компенсировать импортом, в ракетомодельном спорте это не проходит. У нас ракетомодельные двигатели приравниваются к взрывчатым веществам, со всеми вытекающими условиями по хранению, транспортировке и провозе через границу. Не родился еще на земле русской человек, способный наладить импорт таких изделий.

Выход один — производство на родине, благо технология тут вовсе не космическая. Но заводы, имеющие лицензии на производство таких изделий, за них не берутся — им этот бизнес был бы интересен лишь при миллионных тиражах. Вот и вынуждены начинающие ракетомоделисты из крупнейшей космической державы летать на карамельных ракетах. Тогда как в Соединенных Штатах сейчас стали появляться уже многоразовые модельные ракетные двигатели, работающие на гибридном топливе: закись азота плюс твердое горючее. Как вы думаете, какая страна лет через тридцать полетит к Марсу?