Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

Тамбовский государственный университет им. Г.Р.Державина

Академия экономики и управления

Реферат

по статистике на тему: «Факторный метод анализа»

Выполнила: студентка 201 группы

Букатина Анастасия

Проверила: Золотухина В.Н.

Тамбов 2010

    Краткая история

    Задачи и условия факторного анализа

    Процедура вращения. Выделение и интерпретация факторов

    Список литературы

Факторный анализ - многомерный статистический метод, применяемый для изучения взаимосвязей между значениями переменных.

    Краткая история

Факторный анализ впервые возник в психометрике и в настоящее время широко используется не только в психологии, но и в нейрофизиологии, социологии, политологии, в экономике, статистике и других науках. Основные идеи Факторного анализа были заложены английским психологом и антропологом, основателем евгеники Гальтоном Ф. (1822-1911), внесшим также большой вклад в исследование индивидуальных различий. Но в разработку Факторного анализа внесли вклад многие ученые. Разработкой и внедрением Факторного анализа в психологию занимались такие ученые как: Спирмен Ч. (1904, 1927, 1946), Терстоун Л. (1935, 1947, 1951) и Кеттел Р. (1946, 1947, 1951) Также нельзя не упомянуть английского математика и философа Пирсона К., в значительной степени развившего идеи Ф. Гальтона, американского математика Хотеллинга Г., разработавшего современный вариант метода главных компонент. Внимания заслуживает и английский психолог Айзенк Г., широко использовавший Факторный анализ для разработки психологической теории личности. Математически факторный анализ разрабатывался Хотеллингом, Харманом, Кайзером, Терстоуном, Такером и др. Сегодня факторный анализ включён во все пакеты статистической обработки данных - R, SPSS, SAS, Statistica и т. д.

    Задачи и условия факторного анализа

Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время компактно . С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.

Например, анализируя оценки полученные по нескольким шкалам, исследователь замечает, что они сходны между собой и имеют высокий коэффициент корреляции, он может предположить, что существует некоторая латентная переменная, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Такую латентную переменную называют фактором . Данный фактор влияет на многочисленные показатели других переменных, что приводит нас к возможности и необходимости выделить его как наиболее общий, более высокого порядка.

Таким образом можно выделить 2 цели Факторного анализа:

    определение взаимосвязей между переменными, их классификация, т. н. «объективная R-классификация»;

    сокращение числа переменных.

Для выявления наиболее значимых факторов и, как следствие, факторной структуры, наиболее оправданно применять метод главных компонент (МГК). Суть данного метода состоит в замене коррелированных компонент некоррелированными факторами. Другой важной характеристикой метода является возможность ограничиться наиболее информативными главными компонентами и исключить остальные из анализа, что упрощает интерпретацию результатов. Достоинство МГК также в том, что он - единственный математически обоснованный метод факторного анализа .

Факторный анализ может быть 1) разведочным - он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках; и 2) конфирматорным , предназначенным для проверки гипотез о числе факторов и их нагрузках (примечание 2). Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:

    Все признаки должны быть количественными.

    Число признаков должно быть в два раза больше числа переменных.

    Выборка должна быть однородна.

    Исходные переменные должны быть распределены симметрично.

    Факторный анализ осуществляется по коррелирующим переменным .

При анализе в один фактор объединяются сильно коррелирующие между собой переменные, как следствие происходит перераспределение дисперсии между компонентами и получается максимально простая и наглядная структура факторов. После объединения коррелированность компонент внутри каждого фактора между собой будет выше, чем их коррелированность с компонентами из других факторов. Эта процедура также позволяет выделить латентные переменные, что бывает особенно важно при анализе социальных представлений и ценностей.

    Процедура вращения. Выделение и интерпретация факторов

Сущностью факторного анализа является процедура вращения факторов, то есть перераспределения дисперсии по определённому методу. Вращение бывает ортогональным и косоугольным . При первом виде вращения каждый последующий фактор определяется так, чтобы максимизировать изменчивость, оставшуюся от предыдущих, поэтому факторы оказываются независимыми, некоррелированными друг от друга (к этому типу относится МГК). Второй вид - это преобразование, при котором факторы коррелируют друг с другом. Преимущество косоугольного вращения состоит в следующем: когда в результате его выполнения получаются ортогональные факторы, можно быть уверенным, что эта ортогональность действительно им свойственна, а не привнесена искусственно. Однако если цель ортогональных вращений - определение простой структуры факторных нагрузок, то целью большинства косоугольных вращений является определение простой структуры вторичных факторов, то есть косоугольное вращение следует использовать в частных случаях. Поэтому ортогональное вращение предпочтительнее. Существует около 13 методов вращения в обоих видах, в статистической программе SPSS 10 доступны пять: три ортогональных, один косоугольный и один комбинированный, однако из всех наиболее употребителен ортогональный метод «варимакс ». Метод «варимакс» максимизирует разброс квадратов нагрузок для каждого фактора, что приводит к увеличению больших и уменьшению малых значений факторных нагрузок. В результате простая структура получается для каждого фактора в отдельности.

Главной проблемой факторного анализа является выделение и интерпретация главных факторов. При отборе компонент исследователь обычно сталкивается с существенными трудностями, так как не существует однозначного критерия выделения факторов, и потому здесь неизбежен субъективизм интерпретаций результатов. Существует несколько часто употребляемых критериев определения числа факторов. Некоторые из них являются альтернативными по отношению к другим, а часть этих критериев можно использовать вместе, чтобы один дополнял другой:

    Критерий Кайзера или критерий собственных чисел . Этот критерий предложен Кайзером, и является, вероятно, наиболее широко используемым. Отбираются только факторы с собственными значениями равными или большими 1. Это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается.

    Критерий каменистой осыпи или критерий отсеивания . Он является графическим методом, впервые предложенным психологом Кэттелом. Собственные значения возможно изобразить в виде простого графика. Кэттел предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» - «осыпь» является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона. Однако этот критерий отличается высокой субъективностью и, в отличие от предыдущего критерия, статистически необоснован. Недостатки обоих критериев заключаются в том, что первый иногда сохраняет слишком много факторов, в то время как второй, напротив, может сохранить слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных.

На практике возникает важный вопрос: когда полученное решение может быть содержательно интерпретировано. В этой связи предлагается использовать ещё несколько критериев.

    Критерий значимости . Он особенно эффективен, когда модель генеральной совокупности известна и отсутствуют второстепенные факторы. Но критерий непригоден для поиска изменений в модели и реализуем только в факторном анализе по методу наименьших квадратов или максимального правдоподобия.

    Критерий доли воспроизводимой дисперсии . Факторы ранжируются по доле детерминируемой дисперсии, когда процент дисперсии оказывается несущественным, выделение следует остановить. Желательно, чтобы выделенные факторы объясняли более 80 % разброса. Недостатки критерия: во-первых, субъективность выделения, во-вторых, специфика данных может быть такова, что все главные факторы не смогут совокупно объяснить желательного процента разброса. Поэтому главные факторы должны вместе объяснять не меньше 50,1 % дисперсии.

    Критерий интерпретируемости и инвариантности . Данный критерий сочетает статистическую точность с субъективными интересами. Согласно ему, главные факторы можно выделять до тех пор, пока будет возможна их ясная интерпретация. Она, в свою очередь, зависит от величины факторных нагрузок, то есть если в факторе есть хотя бы одна сильная нагрузка, он может быть интерпретирован. Возможен и обратный вариант - если сильные нагрузки имеются, однако интерпретация затруднительна, от этой компоненты предпочтительно отказаться.

Практика показывает, что если вращение не произвело существенных изменений в структуре факторного пространства, это свидетельствует о его устойчивости и стабильности данных. Возможны ещё два варианта: 1). сильное перераспределение дисперсии - результат выявления латентного фактора; 2). очень незначительное изменение (десятые, сотые или тысячные доли нагрузки) или его отсутствие вообще, при этом сильные корреляции может иметь только один фактор, - однофакторное распределение. Последнее возможно, например, когда на предмет наличия определённого свойства проверяются несколько социальных групп, однако искомое свойство есть только у одной из них.

Факторы имеют две характеристики: объём объясняемой дисперсии и нагрузки. Если рассматривать их с точки зрения геометрической аналогии, то касательно первой отметим, что фактор, лежащий вдоль оси ОХ, может максимально объяснять 70 % дисперсии (первый главный фактор), фактор, лежащий вдоль оси ОУ, способен детерминировать не более 30 % (второй главный фактор). То есть в идеальной ситуации вся дисперсия может быть объяснена двумя главными факторами с указанными долями . В обычной ситуации может наблюдаться два или более главных факторов, а также остаётся часть неинтерпретируемой дисперсии (геометрические искажения), исключаемая из анализа по причине незначимости. Нагрузки, опять же с точки зрения геометрии, есть проекции от точек на оси ОХ и ОУ (при трёх- и более факторной структуре также на ось ОZ). Проекции - это коэффициенты корреляции, точки - наблюдения, таким образом, факторные нагрузки являются мерами связи. Так как сильной считается корреляция с коэффициентом Пирсона R ≥ 0,7, то в нагрузках нужно уделять внимание только сильным связям. Факторные нагрузки могут обладать свойством биполярности - наличием положительных и отрицательных показателей в одном факторе. Если биполярность присутствует, то показатели, входящие в состав фактора, дихотомичны и находятся в противоположных координатах.

Методы факторного анализа:

    метод главных компонент

    корреляционный анализ

    метод максимального правдоподобия

Список литературы:

    Индивидуальные различия. Колин Купер. Москва, Аспект Пресс, 2000 г., 527 стр.

    Измерение в психологии. А. Н. Гусев, Ч. А. Измайлов, М. Б. Михалевская. Москва, Смысл, 1997 г., 287 стр.

    Факторный анализ для психологов. О. В. Митина, И. Б. Михайловская. Москва, Учебно-методический коллектор Психология, 2001 г, 169 стр.

    Статистический анализ: подход с применением ЭВМ. А. Афифи, С. Эйзен. Москва, Мир, 1982 г., 488 стр.

    Факторный, дискриминантный и кластерный анализ, сборник работ под ред. Енюкова И. С. Москва, Финансы и статистика, 1989, 215 стр.

    SPSS для социологов. Пациорковский В. В., Пациорковская В. В. Учебное пособие ИСЭПН РАН, Москва, 2005, 433 стр.

    SPSS: Искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей. Бююль А., Цёфель П. СПб., ООО «ДиаСофтЮП», 2002, 603 стр.

    Электронный учебник по статистике. Москва, StatSoft. WEB: www.statsoft.ru/home/textbook/default.htm.

Все явления и процессы хозяйственной деятельности предприятий находятся во взаимосвязи и взаимообусловленности. Одни из них непосредственно связаны между собой, другие косвенно. Отсюда важным методологическим вопросом в экономическом анализе является изучение и измерение влияния факторов на величину исследуемых экономических показателей.

Факторный анализ в учебной литературе трактуется как раздел многомерного статистического анализа, объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц.

Свою историю факторный анализ начинает в психометрике и в настоящее время широко используется не только в психологии, но и в нейрофизиологии, социологии, политологии, в экономике, статистике и других науках. Основные идеи факторного анализа были заложены английским психологом и антропологом Ф. Гальтоном . Разработкой и внедрением факторного анализа в психологии занимались такие ученые как: Ч.Спирмен, Л.Терстоун и Р.Кеттел . Математический факторный анализ разрабатывался Хотеллингом, Харманом, Кайзером, Терстоуном, Такером и другими учеными.

Данный вид анализа позволяет исследователю решить две основные задачи: описать предмет измерения компактно и в то же время всесторонне. С помощью факторного анализа возможно выявление факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.

Цели факторного анализа

К примеру, анализируя оценки, полученные по нескольким шкалам, исследователь отмечает, что они сходны между собой и имеют высокий коэффициент корреляции, в этом случае он может предположить, что существует некоторая латентная переменная , с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Такую латентную переменную называют фактором, который влияет на многочисленные показатели других переменных, что приводит к возможности и необходимости отметить его как наиболее общий, более высокого порядка.

Таким образом, можно выделить две цели факторного анализа :

Для выявления наиболее значимых факторов и, как следствие, факторной структуры, наиболее оправданно применять метод главных компонентов . Суть данного метода состоит в замене коррелированных компонентов некоррелированными факторами. Другой важной характеристикой метода является возможность ограничиться наиболее информативными главными компонентами и исключить остальные из анализа, что упрощает интерпретацию результатов. Достоинство данного метода также в том, что он - единственный математически обоснованный метод факторного анализа.

Факторный анализ - методика комплексного и системного изучения и измерения воздействия факторов на величину результативного показателя.

Типы факторного анализа

Существуют следующие типы факторного анализа:

1) Детерминированный (функциональный) - результативный показатель представлен в виде произведения, частного или алгебраической суммы факторов.

2) Стохастический (корреляционный) - связь между результативным и факторными показателями является неполной или вероятностной.

3) Прямой (дедуктивный) - от общего к частному.

4) Обратный (индуктивный) - от частного к общему.

5) Одноступенчатый и многоступенчатый.

6) Статический и динамический.

7) Ретроспективный и перспективный.

Также факторный анализ может быть разведочным - он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках и конфирматорным , предназначенным для проверки гипотез о числе факторов и их нагрузках. Практическое выполнение факторного анализа начинается с проверки его условий.

Обязательные условия факторного анализа:

  • Все признаки должны быть количественными;
  • Число признаков должно быть в два раза больше числа переменных;
  • Выборка должна быть однородна;
  • Исходные переменные должны быть распределены симметрично;
  • Факторный анализ осуществляется по коррелирующим переменным.

При анализе в один фактор объединяются сильно коррелирующие между собой переменные, как следствие происходит перераспределение дисперсии между компонентами и получается максимально простая и наглядная структура факторов. После объединения коррелированность компонент внутри каждого фактора между собой будет выше, чем их коррелированность с компонентами из других факторов. Эта процедура также позволяет выделить латентные переменные, что бывает особенно важно при анализе социальных представлений и ценностей.

Этапы факторного анализа

Как правило, факторный анализ проводится в несколько этапов.

Этапы факторного анализа:

1 этап. Отбор факторов.

2 этап. Классификация и систематизация факторов.

3 этап. Моделирование взаимосвязей между результативным и факторными показателями.

4 этап. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.

5 этап. Практическое использование факторной модели (подсчет резервов прироста результативного показателя).

По характеру взаимосвязи между показателями различают методы детерминированного и стохастического факторного анализа

Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов.

Методы детерминированного факторного анализа : Метод цепных подстановок; Метод абсолютных разниц; Метод относительных разниц; Интегральный метод; Метод логарифмирования.

Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении (по сравнению со стохастическим анализом), позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы, и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства.

Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель.

Методы стохастического факторного анализа : Способ парной корреляции; Множественный корреляционный анализ; Матричные модели; Математическое программирование; Метод исследования операций; Теория игр.

Необходимо также различать статический и динамический факторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

Гальтоном Ф. (1822-1911), внесшим также большой вклад в исследование индивидуальных различий. Но в разработку Факторного анализа внесли вклад многие ученые. Разработкой и внедрением факторного анализа в психологию занимались такие ученые как Спирмен Ч. (1904, 1927, 1946), Терстоун Л. (1935, 1947, 1951) и Кеттел Р. (1946, 1947, 1951). Также нельзя не упомянуть английского математика и философа Пирсона К., в значительной степени развившего идеи Ф. Гальтона, американского математика Хотеллинга Г. , разработавшего современный вариант метода главных компонент . Внимания заслуживает и английский психолог Айзенк Г. , широко использовавший Факторный анализ для разработки психологической теории личности. Математически факторный анализ разрабатывался Хотеллингом, Харманом, Кайзером, Терстоуном, Такером и др. Сегодня факторный анализ включён во все пакеты статистической обработки данных - , SAS , SPSS , Statistica и т. д.

Задачи и возможности факторного анализа

Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время компактно . С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.

Таким образом можно выделить 2 цели Факторного анализа:

При анализе в один фактор объединяются сильно коррелирующие между собой переменные, как следствие происходит перераспределение дисперсии между компонентами и получается максимально простая и наглядная структура факторов. После объединения коррелированность компонент внутри каждого фактора между собой будет выше, чем их коррелированность с компонентами из других факторов. Эта процедура также позволяет выделить латентные переменные, что бывает особенно важно при анализе социальных представлений и ценностей. Например, анализируя оценки, полученные по нескольким шкалам, исследователь замечает, что они сходны между собой и имеют высокий коэффициент корреляции, он может предположить, что существует некоторая латентная переменная, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Такую латентную переменную называют фактором . Данный фактор влияет на многочисленные показатели других переменных, что приводит нас к возможности и необходимости выделить его как наиболее общий, более высокого порядка. Для выявления наиболее значимых факторов и, как следствие, факторной структуры, наиболее оправданно применять метод главных компонентов (МГК). Суть данного метода состоит в замене коррелированных компонентов некоррелированными факторами. Другой важной характеристикой метода является возможность ограничиться наиболее информативными главными компонентами и исключить остальные из анализа, что упрощает интерпретацию результатов. Достоинство МГК также в том, что он - единственный математически обоснованный метод факторного анализа .

Факторный анализ может быть:

  • разведочным - он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках;
  • конфирматорным , предназначенным для проверки гипотез о числе факторов и их нагрузках (примечание 2).

Условия применения факторного анализа

Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:

Основные понятия факторного анализа

  • Фактор - скрытая переменная
  • Нагрузка - корреляция между исходной переменной и фактором

Процедура вращения. Выделение и интерпретация факторов

Сущностью факторного анализа является процедура вращения факторов, то есть перераспределения дисперсии по определённому методу. Цель ортогональных вращений - определение простой структуры факторных нагрузок, целью большинства косоугольных вращений является определение простой структуры вторичных факторов, то есть косоугольное вращение следует использовать в частных случаях. Поэтому ортогональное вращение предпочтительнее. Согласно определению Мюльека простая структура соответствует требованиям:

  • в каждой строке матрицы вторичной структуры V должен быть хотя бы один нулевой элемент;
  • Для каждого столбца k матрицы вторичной структуры V должно существовать подмножество из r линейно-независимых наблюдаемых переменных, корреляции которых с k-м вторичным фактором - нулевые. Данный критерий сводится к тому, что каждый столбец матрицы должен содержать не менее r нулей.
  • У одного из столбцов каждой пары столбцов матрицы V должно быть несколько нулевых коэффициентов (нагрузок) в тех позициях, где для другого столбца они ненулевые. Это предположение гарантирует различимость вторичных осей и соответствующих им подпространств размерности r-1 в пространстве общих факторов.
  • При числе общих факторов больше четырех в каждой паре столбцов должно быть некоторое количество нулевых нагрузок в одних и тех же строках. Данное предположение дает возможность разделить наблюдаемые переменные на отдельные скопления.
  • Для каждой пары столбцов матрицы V должно быть как можно меньше значительных по величине нагрузок, соответствующих одним и тем же строкам. Это требование обеспечивает минимизацию сложности переменных.

(В определении Мьюлейка через r обозначено число общих факторов, а V - матрица вторичной структуры, образованная координатами (нагрузками) вторичных факторов, получаемых в результате вращения.) Вращение бывает:

  • ортогональным
  • косоугольным .

При первом виде вращения каждый последующий фактор определяется так, чтобы максимизировать изменчивость, оставшуюся от предыдущих, поэтому факторы оказываются независимыми, некоррелированными друг от друга (к этому типу относится МГК). Второй вид - это преобразование, при котором факторы коррелируют друг с другом. Преимущество косоугольного вращения состоит в следующем: когда в результате его выполнения получаются ортогональные факторы, можно быть уверенным, что эта ортогональность действительно им свойственна, а не привнесена искусственно. Существует около 13 методов вращения в обоих видах, в статистической программе SPSS 10 доступны пять: три ортогональных, один косоугольный и один комбинированный, однако из всех наиболее употребителен ортогональный метод «варимакс ». Метод «варимакс» максимизирует разброс квадратов нагрузок для каждого фактора, что приводит к увеличению больших и уменьшению малых значений факторных нагрузок. В результате простая структура получается для каждого фактора в отдельности .

Главной проблемой факторного анализа является выделение и интерпретация главных факторов. При отборе компонент исследователь обычно сталкивается с существенными трудностями, так как не существует однозначного критерия выделения факторов, и потому здесь неизбежен субъективизм интерпретаций результатов. Существует несколько часто употребляемых критериев определения числа факторов. Некоторые из них являются альтернативными по отношению к другим, а часть этих критериев можно использовать вместе, чтобы один дополнял другой:

Практика показывает, что если вращение не произвело существенных изменений в структуре факторного пространства, это свидетельствует о его устойчивости и стабильности данных. Возможны ещё два варианта: 1). сильное перераспределение дисперсии - результат выявления латентного фактора; 2). очень незначительное изменение (десятые, сотые или тысячные доли нагрузки) или его отсутствие вообще, при этом сильные корреляции может иметь только один фактор, - однофакторное распределение. Последнее возможно, например, когда на предмет наличия определённого свойства проверяются несколько социальных групп, однако искомое свойство есть только у одной из них.

Факторы имеют две характеристики: объём объясняемой дисперсии и нагрузки. Если рассматривать их с точки зрения геометрической аналогии, то касательно первой отметим, что фактор, лежащий вдоль оси ОХ, может максимально объяснять 70 % дисперсии (первый главный фактор), фактор, лежащий вдоль оси ОУ, способен детерминировать не более 30 % (второй главный фактор). То есть в идеальной ситуации вся дисперсия может быть объяснена двумя главными факторами с указанными долями . В обычной ситуации может наблюдаться два или более главных факторов, а также остаётся часть неинтерпретируемой дисперсии (геометрические искажения), исключаемая из анализа по причине незначимости. Нагрузки, опять же с точки зрения геометрии, есть проекции от точек на оси ОХ и ОУ (при трёх- и более факторной структуре также на ось ОZ). Проекции - это коэффициенты корреляции, точки - наблюдения, таким образом, факторные нагрузки являются мерами связи. Так как сильной считается корреляция с коэффициентом Пирсона R ≥ 0,7, то в нагрузках нужно уделять внимание только сильным связям. Факторные нагрузки могут обладать свойством биполярности - наличием положительных и отрицательных показателей в одном факторе. Если биполярность присутствует, то показатели, входящие в состав фактора, дихотомичны и находятся в противоположных координатах .

Методы факторного анализа:

Примечания

Литература

  • Афифи А., Эйзен С. Статистический анализ: Подход с использованием ЭВМ. - М .: Мир, 1982. - С. 488.
  • Колин Купер. Индивидуальные различия. - М.: Аспект Пресс, 2000. - 527 с.
  • Гусев А. Н., Измайлов Ч. А., Михалевская М. Б. Измерение в психологии. - М.: Смысл, 1997. - 287 с.
  • Митина О. В., Михайловская И. Б. Факторный анализ для психологов. - М.: Учебно-методический коллектор Психология, 2001. - 169 с.
  • Факторный, дискриминантный и кластерный анализ / сборник работ под ред. Енюкова И. С. - М.: Финансы и статистика, 1989. - 215 с.
  • Пациорковский В. В., Пациорковская В. В. SPSS для социологов. - М.: Учебное пособие ИСЭПН РАН, 2005. - 433 с.
  • Бююль А., Цёфель П. SPSS: Искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей. - СПб.: ООО «ДиаСофтЮП», 2002. - 603 с.
  • Факторный, дискриминантныи и кластерный анализ: Пер.

Ф18 с англ./Дж.-О. Ким, Ч. У. Мьюллер, У. Р. Клекка и др.; Под ред. И. С. Енюкова. - М.: Финансы и статистика, 1989.- 215 с:

Ссылки

  • Электронный учебник StatSoft. Главные компоненты и факторный анализ
  • Нелинейный метод главных компонент (сайт-библиотека)

Wikimedia Foundation . 2010 .

Смотреть что такое "Факторный анализ" в других словарях:

    факторный анализ - — факторный анализ Область математической статистики (один из разделов многомерного статистического анализа), объединяющая вычислительные методы, которые в ряде случаев позволяют … Справочник технического переводчика

    Статистический метод проверки гипотез о влиянии разл. факторов на изучаемую случайную величину. Разработана и общепринята модель, при которой влияние фактора представлено в линейном виде. Процедура анализа сводится к оценочным операциям с помощью … Геологическая энциклопедия

    факторный анализ - (от лат. factor действующий, производящий и греч. analysis разложение, расчленение) метод многомерной математической статистики (см. статистические методы в психологии), применяемый при исследовании статистически связанных признаков с целью… … Большая психологическая энциклопедия

    Метод исследования экономики и производства, в основе которого лежит анализ воздействия разнообразных факторов на результаты экономической деятельности, ее эффективность. Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б.. Современный экономический … Экономический словарь

    Факторный анализ - область математической статистики (один из разделов многомерного статистического анализа), объединяющая вычислительные методы, которые в ряде случаев позволяют получить компактное описание исследуемых явлений на основе… … Экономико-математический словарь

    ФАКТОРНЫЙ АНАЛИЗ, в статистике и психометрии математический метод, при помощи которого большое количество измерений и исследований сводится к малому числу «факторов», полностью объясняющих полученные результаты исследований, а также их… … Научно-технический энциклопедический словарь

    Раздел статистического анализа многомерного (См. Статистический анализ многомерный),. объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц.… … Большая советская энциклопедия

Основные положения

Факторный анализ – это один из новых разделов многомерного статистического анализа. Первоначально этот метод разрабатывался для объяснения корреляции между исходными параметрами. Результатом корреляционного анализа является матрица коэффициентов корреляции. При малом числе признаков (переменных) можно провести визуальный анализ этой матрицы. С ростом числа признаков (10 и более) визуальный анализ не даст положительных результатов. Оказывается, что все многообразие корреляционных связей можно объяснить действием нескольких обобщенных факторов, которые являются функциями исследуемых параметров, при этом сами факторы могут быть неизвестны, но их можно выразить через исследуемые признаки. Основоположником факторного анализа является американский ученый Л.Терстоун.

Современные статистики под факторным анализом понимают совокупность методов, которые на основе реально существующей связи между признаками позволяет выявить латентные (скрытые) обобщающие характеристики организационной структуры и механизмы развития изучаемых явлений и процессов.

Пример: предположим, что n автомобилей оценивается по 2 признакам:

x 1 – стоимость автомобиля,

x 2 – длительность рабочего ресурса мотора.

При условии коррелированности x 1 и x 2 в системе координат появляется направленное и достаточно плотное скопление точек, формально отображаемое новыми осями и(Рис.5).

Рис.6

Характерная особенность F 1 и F 2 заключается в том, что они проходят через плотные скопления точек и в свою очередь коррелируют с x 1 x 2 .Максимальное

число новых осей будет равно числу элементарных признаков. Дальнейшие разработки факторного анализа показали, что этот метод может быть с успехом применены в задачах группировки и классификации объектов.

Представление информации в факторном анализе.

Для проведения факторного анализа информация должна быть представлена в виде матрицы размером m x n:

Строки матрицы соответствуют объектам наблюдений (i=), а столбцы – признакам (j=).

Признаки, характеризующие объект имеют разную размерность. Для того, чтобы их привести к одной размерности и обеспечить сопоставимость признаков матрицу исходных данных обычно нормируют, вводя единый масштаб. Самым распространенным способом нормировки является стандартизация. От переменных переходят к переменным

Среднее значение j признака,

Среднеквадратическое отклонение.

Такое преобразование называется стандартизацией.

Основная модель факторного анализа

Основная модель факторного анализа имеет вид:

z j – j -й признак (величина случайная);

F 1 , F 2 , …, F p – общие факторы (величины случайные, нормально распределенные);

u j – характерный фактор;

j1 , j2 , …, jp факторы нагрузки, характеризующие существенность влияния каждого фактора (параметры модели, подлежащие определению);

Общие факторы имеют существенное значение для анализа всех признаков. Характерные факторы показывают, что он относится только к данному -му признаку, это специфика признака, которая не может быть выражена через факторы. Факторные нагрузки j1 , j2 , …, jp характеризуют величину влияния того или иного общего фактора в вариации данного признака. Основная задача факторного анализа – определить факторные нагрузки. Дисперсию S j 2 каждого признака, можно разделить на 2 составляющие:

    первая часть обуславливает действие общих факторов – общность h j 2 ;

    вторая часть обуславливает действие характерного фактора –характерность - d j 2 .

Все переменные представлены в стандартизованном виде, поэтому дисперсия - гопризнака S j 2 = 1.

Если общие и характерные факторы не коррелируют между собой, то дисперсию j-го признака можно представить в виде:

где - доля дисперсии признака, приходящаяся на k -ый фактор.

Полный вклад какого-либо фактора в суммарную дисперсию равен:

Вклад всех общих факторов в суммарную дисперсию:

Результаты факторного анализа удобно представить в виде таблицы.

Факторные нагрузки

Общности

a 11 a 21 … a p1

a 12 a 22 a p2

… … … …

a 1m a 2m a pm

факторов

V 1 V 2 … V p

А - матрица факторных нагрузок. Ее можно получить различными способами, в настоящее время наиболее распространение получил метод главных компонент или главных факторов.

Вычислительная процедура метода главных факторов.

Решение задачи с помощью главных компонент сводится к поэтапному преобразованию матрицы исходных данных X :

Х - матрица исходных данных;

Z – матрица стандартизированных значений признаков,

R – матрица парных корреляций:

Диагональная матрица собственных (характеристических) чисел,

j находят решением характеристического уравнения

Е –единичная матрица,

 j – показатель дисперсии каждой главной компоненты ,

при условии стандартизации исходных данных , тогда=m

U – матрица собственных векторов, которые находят из уравнения:

Реально это означает решение m систем линейных уравнений для каждого

Т.е. каждому собственному числу соответствует система уравнений.

Затем находят V - матрицу нормированных собственных векторов.

Матрицу факторного отображения А вычисляют по формуле:

Затем находим значения главных компонент по одной из эквивалентных формул:

Совокупность из четырех промышленных предприятий оценена по трем характерным признакам:

    среднегодовая выработка на одного работника х 1 ;

    уровень рентабельности х 2 ;

Уровень фондоотдачи х 3.

Результат представлен в стандартизированной матрице Z :

По матрице Z получена матрица парных корреляций R :

    Найдем определитель матрицы парных корреляций(например методом Фаддеева):

    Построим характеристическое уравнение:

    Решая это уравнение найдем:

Таким образом исходные элементарные признаки х 1 , х 2 , х 3 могут быть обобщены значениями трех главных компонент, причем:

F 1 объясняет примерно всей вариации,

F 2 - , аF 3 -

Все три главные компоненты объясняют вариации полностью на 100%.

Решая эту систему находим:

Аналогично строятся системы для  2 и  3 . Для  2 решение системы:

Матрица собственных векторов U принимает вид:

    Каждый элемент матрицы разделим на сумму квадратов элементов j-го

столбца, получим нормированную матрицу V .

Отметим, что должно выполнятся равенство =E .

    Матрицу факторного отображения получим из матричного соотношения

=

По смыслу каждый элемент матрицы А представляет частные коэффициенты матрицы корреляции между исходным признаком x j и главными компонентами F r . Поэтому все элементы .

Из равенства следует условиеr - число компонент .

Полный вклад каждого фактора в суммарную дисперсию признаков равен:

Модель факторного анализа примет вид:

Найдем значения главных компонент (матрицу F ) по формуле

Центр распределения значений главных компонент находится в точке (0,0,0).

Далее аналитические выводы по результатам расчетов следуют уже после принятия решения о числе значащих признаков и главных компоненти определения названий главным компонентам. Задачи распознавания главных компонент, определения для них названий решают субъективно на основе весовых коэффициентовиз матрицы отображенияА .

Рассмотрим вопрос формулировки названий главных компонент.

Обозначим w 1 – множество незначимых весовых коэффициентов, в которое включаются близкие к нулю элементы,,

w 2 - множество значимых весовых коэффициентов,

w 3 – подмножество значимых весовых коэффициентов, не участвующих в формировании названия главной компоненты.

w 2 - w 3 – подмножество весовых коэффициентов, участвующих в формировании названия.

Вычисляем коэффициент информативности для каждого главного фактора

Набор объяснимых признаков считаем удовлетворительным, если значения коэффициентов информативности лежат в пределах 0,75-0,95.

a 11 =0,776 a 12 =-0,130 a 13 =0,308

a 12 =0,904 a 22 =-0,210 a 23 =-0,420

а 31 =0,616 а 32 =0,902 а 33 =0,236

Для j=1 w 1 = ,w 2 ={a 11 ,a 21 ,a 31 },

.

Для j=2 w 1 ={ a 12 , a 22 }, w 2 ={ а 32 },

Для j=3 w 1 ={ а 33 }, w 2 ={a 13 ,a 33 },

Значениями признаков x 1 , x 2 , x 3 определяется состав главной компоненты на 100%. при этом наибольший вклад признакаx 2 , смысл которого-рентабельность. корректным для названия признака F 1 будет эффективность производства .

F 2 определяется компонентой x 3 (фондоотдача), назовем ее эффективность использования основных производственных средств .

F 3 определяется компонентами x 1 ,x 2 –в анализе может не рассматриваться т.к. она объясняет всего 10% общей вариации.

Литература.

    Попов А.А.

Excel: Практическое руководство, ДЕСС КОМ.-М.-2000.

    Дьяконов В.П., Абраменкова И.В. Mathcad7 в математике, физике и в Internet. Изд-во « Номидж», М.-1998, раздел 2.13. Выполнение регрессии.

    Л.А. Сошникова, В.Н. Томашевич и др. Многомерный статистический анализ в экономике под ред. В.Н. Томашевича.- М. –Наука, 1980.

    Колемаев В.А., О.В. Староверов, В.Б. Турундаевский Теория вероятностей и математическая статистика. –М. – Высшая школа- 1991.

    К Иберла. Факторный анализ.-М. Статистика.-1980.

Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны

Пусть генеральные совокупности X и Y распределены нормально, причем их дисперсии известны (например из предшествующего опыта или найдены теоретически). По независимым выборкам объемов n и m, извлеченным из этих совокупностей, найдены выборочные средние x в и y в.

Требуется по выборочным средним при заданном уровне значимости проверить нулевую гипотезу, состоящую в том, что генеральные средние (математические ожидания) рассматриваемых совокупностей равны между собой, т. е. Н 0: М(X) = М(Y).

Учитывая, что выборочные средние являются несмещенными оценками генеральных средних, т. е. М(x в) = М(X) и М(y в) = М(Y), нулевую гипотезу можно записать так: Н 0: М(x в) = М(y в).

Таким образом, требуется проверить, что математические ожидания выборочных средних равны между собой. Такая задача ставится, потому что, как правило, выборочные средние являются различными. Возникает вопрос: значимо или незначимо различаются выборочные средние?

Если окажется, что нулевая гипотеза справедлива, т. е. генеральные средние одинаковы, то различие выборочных средних незначимо и объясняется случайными причинами и, в частности, случайным отбором объектов выборки.

Если нулевая гипотеза будет отвергнута, т. е. генеральные средние неодинаковы, то различие выборочных средних значимо и не может быть объяснено случайными причинами. А объясняется тем, что сами генеральные средние (математические ожидания) различны.

В качестве проверки нулевой гипотезы примем случайную величину.

Критерий Z – нормированная нормальная случайная величина. Действительно, величина Z распределена нормально, так как является линейной комбинацией нормально распределенных величин X и Y; сами эти величины распределены нормально как выборочные средние, найденные по выборкам, извлеченным из генеральных совокупностей; Z – нормированная величина, потому что М(Z) = 0, при справедливости нулевой гипотезы D(Z) = 1, поскольку выборки независимы.

Критическая область строится в зависимости от вида конкурирующей гипотезы.

Первый случай . Нулевая гипотеза Н 0:М(X)=М(Y). Конкурирующая гипотеза Н 1: М(X) ¹М(Y).

В этом случае строят двустороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости .

Наибольшая мощность критерия (вероятность попадания критерия в критическую область при справедливости конкурирующей гипотезы) достигается тогда, когда «левая» и «правая» критические точки выбраны так, что вероятность попадания критерия в каждый интервал критической области равна:

P(Z < zлев.кр)=a¤2,

P(Z > zправ.кр)=a¤2. (1)

Поскольку Z – нормированная нормальная величина, а распределение такой величины симметрично относительно нуля, критические точки симметричны относительно нуля.

Таким образом, если обозначить правую границу двусторонней критической области через zкр, то левая граница -zкр.

Итак, достаточно найти правую границу, чтобы найти саму двустороннюю критическую область Z < -zкр, Z > zкр и область принятия нулевой гипотезы (-zкр, zкр).

Покажем, как найти zкр – правую границу двусторонней критической области, используя функцию Лапласа Ф(Z). Известно, что функция Лапласа определяет вероятность попадания нормированной нормальной случайной величины, например Z, в интервале (0;z):

Р(0 < Z

Так как распределение Z симметрично относительно нуля, то вероятность попадания Z в интервал (0; ¥) равна 1/2. Следовательно, если разбить этот интервал точкой zкр на интервал (0, zкр) и (zкр, ¥), то по теореме сложения Р(0< Z < zкр)+Р(Z > zкр)=1/2.

В силу (1) и (2) получим Ф(zкр)+a/2=1/2. Следовательно, Ф(zкр) =(1-a)/2.

Отсюда заключаем: для того чтобы найти правую границу двусторонней критической области (zкр), достаточно найти значение аргумента функции Лапласа, которому соответствует значение функции, равное (1-a)/2.

Тогда двусторонняя критическая область определяется неравенствами Z < – zкр, Z > zкр, или равносильным неравенством ½Z½ > zкр, а область принятия нулевой гипотезы неравенством – zкр < Z < zкр или равносильным неравенством çZ ç< zкр.

Обозначим значение критерия, вычисленное по данным наблюдений, через zнабл и сформулируем правило проверки нулевой гипотезы.

Правило.

1. Вычислить наблюдаемое значение критерия

2. По таблице функции Лапласа найти критическую точку по равенству Ф(zкр)=(1-a)/2.

3. Если ç zнабл ç < zкр – нет оснований отвергнуть нулевую гипотезу.

Если ç zнабл ç> zкр – нулевую гипотезу отвергают.

Второй случай . Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)>M(Y).

На практике такой случай имеет место, если профессиональные соображения позволяют предположить, что генеральная средняя одной совокупности больше генеральной средней другой. Например, если введено усовершенствование технологического процесса, то естественно допустить, что оно приведет к увеличению выпуска продукции.

В этом случае строят правостороннюю критическую область исходя из требования, чтобы вероятность попадания критерия в эту область, в предположении справедливости нулевой гипотезы, была равна принятому уровню значимости:

P(Z> zкр)=a. (3)

Покажем, как найти критическую точку при помощи функции Лапласа. Воспользуемся соотношением

P(0 zкр)=1/2.

В силу (2) и (3) имеем Ф(zкр)+a=1/2. Следовательно, Ф(zкр)=(1-2a)/2.

Отсюда заключаем, для того чтобы найти границу правосторонней критической области (zкр), достаточно найти значение функции Лапласа, равное (1-2a)/2. Тогда правосторонняя критическая область определяется неравенством Z > zкр, а область принятия нулевой гипотезы – неравенством Z < zкр.

Правило.

1. Вычислить наблюдаемое значение критерия zнабл.

2. По таблице функции Лапласа найти критическую точку из равенства Ф(zкр)=(1-2a)/2.

3. Если Z набл < z кр – нет оснований отвергнуть нулевую гипотезу. Если Z набл > z кр – нулевую гипотезу отвергаем.

Третий случай. Нулевая гипотеза Н0: M(X)=M(Y). Конкурирующая гипотеза Н1: M(X)

В этом случае строят левостороннюю критическую область исходя из требования, вероятность попадания критерия в эту область, в пред-

положении справедливости нулевой гипотезы, была равна принятому уровню значимости P(Z < z’кр)=a, т.е. z’кр= – zкр. Таким образом, для того чтобы найти точку z’кр, достаточно сначала найти “вспомогательную точку” zкр а затем взять найденное значение со знаком минус. Тогда левосторонняя критическая область определяется неравенством Z < -zкр, а область принятия нулевой гипотезы – неравенством Z > -zкр.

Правило.

1. Вычислить Zнабл.

2. По таблице функции Лапласа найти “вспомогательную точку” zкр по равенству Ф(zкр)=(1-2a)/2, а затем положить z’кр = -zкр.

3. Если Zнабл > -zкр, – нет оснований отвергать нулевую гипотезу.

Если Zнабл < -zкр, – нулевую гипотезу отвергают.